Daugavet Centers

dc.contributor.authorBosenko, T.
dc.contributor.authorKadets, V.
dc.date.accessioned2016-10-01T15:04:24Z
dc.date.available2016-10-01T15:04:24Z
dc.date.issued2010
dc.description.abstractAn operator G: X → Y is said to be a Daugavet center if ||G + T|| = ||G|| + ||T|| for every rank-1 operator T: X → Y . The main result of the paper is: if G: X →! Y is a Daugavet center, Y is a subspace of a Banach space E, and J : Y → E is the natural embedding operator, then E can be equivalently renormed in such a way that J ○ G : X → E is also a Daugavet center. This result was previously known for the particular case X = Y, G = Id and only in separable spaces. The proof of our generalization is based on an idea completely di®erent from the original one. We also give some geometric characterizations of the Daugavet centers, present a number of examples, and generalize (mostly in straightforward manner) to Daugavet centers some results known previously for spaces with the Daugavet property.uk_UA
dc.description.sponsorshipResearch of the second named author was conducted during his stay in the University of Granada and was supported by Junta de Andalucia grant P06-FQM-01438.uk_UA
dc.identifier.citationDaugavet Centers / T. Bosenko, V. Kadets // Журнал математической физики, анализа, геометрии. — 2010. — Т. 6, № 1. — С. 3-20. — Бібліогр.: 14 назв. — англ.uk_UA
dc.identifier.issn1812-9471
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/106629
dc.language.isoenuk_UA
dc.publisherФізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН Україниuk_UA
dc.relation.ispartofЖурнал математической физики, анализа, геометрии
dc.statuspublished earlieruk_UA
dc.titleDaugavet Centersuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
01-Bosenko.pdf
Розмір:
229.73 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: