On wildness of idempotent generated algebras associated with extended Dynkin diagrams

dc.contributor.authorBondarenko, V.M.
dc.date.accessioned2019-06-18T14:12:06Z
dc.date.available2019-06-18T14:12:06Z
dc.date.issued2004
dc.description.abstractLet Λ denote an extended Dynkin diagram with vertex set Λ0 = {0, 1,... ,n}. For a vertex i, denote by S(i) the set of vertices j such that there is an edge joining i and j; one assumes the diagram has a unique vertex p, say p = 0, with |S(p)| = 3. Further, denote by Λ \ 0 the full subgraph of Λ with vertex set Λ0 \ {0}. Let ∆ = (δi |i ∈ Λ0) ∈ Z |Λ0| be an imaginary root of Λ, and let k be a field of arbitrary characteristic (with unit element 1). We prove that if Λ is an extended Dynkin diagram of type D₄, E₆ or E₇, then the k-algebra Qk(Λ, ∆) with generators ei , i ∈ Λ0 \ {0}, and relations e 2 i = ei , eiej = 0 if i and j 6= i belong to the same connected component of Λ \ 0, and Pn i=1 δi ei = δ01 has wild representation time.uk_UA
dc.identifier.citationOn wildness of idempotent generated algebras associated with extended Dynkin diagrams / V.M. Bondarenko // Algebra and Discrete Mathematics. — 2004. — Vol. 3, № 3. — С. 1–11. — Бібліогр.: 4 назв. — англ.uk_UA
dc.identifier.issn1726-3255
dc.identifier.other2000 Mathematics Subject Classification: 16G60; 15A21, 46K10, 46L05.
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/156457
dc.language.isoenuk_UA
dc.publisherІнститут прикладної математики і механіки НАН Україниuk_UA
dc.relation.ispartofAlgebra and Discrete Mathematics
dc.statuspublished earlieruk_UA
dc.titleOn wildness of idempotent generated algebras associated with extended Dynkin diagramsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
01-Bondarenko.pdf
Розмір:
142.09 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: