Weighted Tensor Products of Joyal Species, Graphs, and Charades

dc.contributor.authorStreet, R.
dc.date.accessioned2019-02-14T18:10:08Z
dc.date.available2019-02-14T18:10:08Z
dc.date.issued2016
dc.description.abstractMotivated by the weighted Hurwitz product on sequences in an algebra, we produce a family of monoidal structures on the category of Joyal species. We suggest a family of tensor products for charades. We begin by seeing weighted derivational algebras and weighted Rota-Baxter algebras as special monoids and special semigroups, respectively, for the same monoidal structure on the category of graphs in a monoidal additive category. Weighted derivations are lifted to the categorical level.uk_UA
dc.description.sponsorshipI am grateful to the referees for their careful work and, in particular, for pointing out the references [1, 3, 20]. The author gratefully acknowledges the support of Australian Research Council Discovery Grant DP130101969.uk_UA
dc.identifier.citationWeighted Tensor Products of Joyal Species, Graphs, and Charades / R. Street // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 23 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.otherDOI:10.3842/SIGMA.2016.005
dc.identifier.other2010 Mathematics Subject Classification: 18D10; 05A15; 18A32; 18D05; 20H30; 16T30
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/147417
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleWeighted Tensor Products of Joyal Species, Graphs, and Charadesuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
005-Street.pdf
Розмір:
472.33 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: