Liouville Action for Harmonic Diffeomorphisms

dc.contributor.authorPark, Jinsung
dc.date.accessioned2026-01-02T08:31:31Z
dc.date.issued2021
dc.description.abstractIn this paper, we introduce a Liouville action for a harmonic diffeomorphism from a compact Riemann surface to a compact hyperbolic Riemann surface of genus 𝑔 ≥ 2. We derive the variational formula of this Liouville action for harmonic diffeomorphisms when the source Riemann surfaces vary with a fixed target Riemann surface.
dc.description.sponsorshipThis work was partially supported by Samsung Science and Technology Foundation under Project Number SSTF-BA1701-02. The author thanks referees for their helpful comments and suggestions, which improve the exposition of the paper.
dc.identifier.citationLiouville Action for Harmonic Diffeomorphisms. Jinsung Park. SIGMA 17 (2021), 097, 16 pages
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2021.097
dc.identifier.issn1815-0659
dc.identifier.other2020 Mathematics Subject Classification: 14H60; 32G15; 53C43; 58E20
dc.identifier.otherarXiv:2105.11074
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/211430
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleLiouville Action for Harmonic Diffeomorphisms
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
097-Park.pdf
Розмір:
385.39 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: