New Techniques for Worldline Integration
| dc.contributor.author | Edwards, James P. | |
| dc.contributor.author | Mata, C. Moctezuma | |
| dc.contributor.author | Müller, Uwe | |
| dc.contributor.author | Schubert, Christian | |
| dc.date.accessioned | 2025-12-30T15:55:16Z | |
| dc.date.issued | 2021 | |
| dc.description.abstract | The worldline formalism provides an alternative to Feynman diagrams in the construction of amplitudes and effective actions that shares some of the superior properties of the organization of amplitudes in string theory. In particular, it allows one to write down integral representations combining the contributions of large classes of Feynman diagrams of different topologies. However, calculating these integrals analytically without splitting them into sectors corresponding to individual diagrams poses a formidable mathematical challenge. We summarize the history and state of the art of this problem, including some natural connections to the theory of Bernoulli numbers and polynomials and multiple zeta values. | |
| dc.description.sponsorship | We thank Andrei Davydychev and Tord Riemann for sharing with us their expertise on scalar off-shell N-point functions. | |
| dc.identifier.citation | New Techniques for Worldline Integration. James P. Edwards, C. Moctezuma Mata, Uwe Müller and Christian Schubert. SIGMA 17 (2021), 065, 19 pages | |
| dc.identifier.doi | https://doi.org/10.3842/SIGMA.2021.065 | |
| dc.identifier.issn | 1815-0659 | |
| dc.identifier.other | 2020 Mathematics Subject Classification: 11B68; 33C65; 81Q30 | |
| dc.identifier.other | arXiv:2106.12071 | |
| dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/211358 | |
| dc.language.iso | en | |
| dc.publisher | Інститут математики НАН України | |
| dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
| dc.status | published earlier | |
| dc.title | New Techniques for Worldline Integration | |
| dc.type | Article |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 065-Edwards.pdf
- Розмір:
- 980.67 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: