Collective Heavy Top Dynamics

dc.contributor.authorOhsawa, T.
dc.date.accessioned2025-12-05T09:29:54Z
dc.date.issued2019
dc.description.abstractWe construct a Poisson map M: T*C² → se(3)* with respect to the canonical Poisson bracket on T*C² ≅ T*ℝ⁴ and the (−)-Lie-Poisson bracket on the dual se(3)* of the Lie algebra of the special Euclidean group SE(3). The essential part of this map is the momentum map associated with the cotangent lift of the natural right action of the semidirect product Lie group SU(2)⋉C² on C². This Poisson map gives rise to a canonical Hamiltonian system on T*C² whose solutions are mapped by M to solutions of the heavy top equations. We show that the Casimirs of the heavy top dynamics and the additional conserved quantity of the Lagrange top correspond to the Noether conserved quantities associated with certain symmetries of the canonical Hamiltonian system. We also construct a Lie-Poisson integrator for the heavy top dynamics by combining the Poisson map M with a simple symplectic integrator, and demonstrate that the integrator exhibits either exact or near conservation of the conserved quantities of the Kovalevskaya top.
dc.description.sponsorshipI would like to thank the referees for their helpful comments and suggestions. This work was partially supported by NSF grant CMMI-1824798.
dc.identifier.citationCollective Heavy Top Dynamics / T. Ohsawa // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 17 назв. — англ.
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2019.083
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 37J15; 37M15; 53D20; 70E17; 70E40; 70H05; 70H06
dc.identifier.otherarXiv: 1907.07819
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/210305
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleCollective Heavy Top Dynamics
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
083-Ohsawa.pdf
Розмір:
932.7 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: