The Endless Beta Integrals

dc.contributor.authorSarkissian, Gor A.
dc.contributor.authorSpiridonov, Vyacheslav P.
dc.date.accessioned2025-12-17T14:35:53Z
dc.date.issued2020
dc.description.abstractWe consider a special degeneration limit ω₁ → −ω₂ (or 𝘣 → i in the context of 2𝒹 Liouville quantum field theory) for the most general univariate hyperbolic beta integral. This limit is also applied to the most general hyperbolic analogue of the Euler-Gauss hypergeometric function and its 𝑊(𝐸₇) group of symmetry transformations. Resulting functions are identified as hypergeometric functions over the field of complex numbers related to the SL(2, ℂ) group. A new, similar nontrivial hypergeometric degeneration of the Faddeev modular quantum dilogarithm (or hyperbolic gamma function) is discovered in the limit ω₁ → ω₂ (or 𝘣 → 1).
dc.description.sponsorshipThis paper is based on the talk given by V.S. at the conference “Elliptic Integrable Systems, Special Functions and Quantum Field Theory”, June 16–20, 2019, Nordita, Stockholm. The key results of this work were obtained within the research program of project no. 19-11-00131 supported by the Russian Science Foundation. We thank T.H. Koornwinder and E.M. Rains for explanations on the uniformness of the limit for the q-gamma function (25) following from their works [22] and [29].
dc.identifier.citationThe Endless Beta Integrals. Gor A. Sarkissian and Vyacheslav P. Spiridonov. SIGMA 16 (2020), 074, 21 pages
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2020.074
dc.identifier.issn1815-0659
dc.identifier.other2020 Mathematics Subject Classification: 33D60; 33E20
dc.identifier.otherarXiv:2005.01059
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/210774
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleThe Endless Beta Integrals
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
074-Sarkissian.pdf
Розмір:
503.29 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: