On the number of topologies on a finite set
| dc.contributor.author | Kizmaz, M.Y. | |
| dc.date.accessioned | 2023-02-28T18:51:11Z | |
| dc.date.available | 2023-02-28T18:51:11Z | |
| dc.date.issued | 2019 | |
| dc.description.abstract | We denote the number of distinct topologies which can be defined on a set X with n elements by T(n). Similarly, T0(n) denotes the number of distinct T₀ topologies on the set X. In the present paper, we prove that for any prime p, T(pᵏ) ≡ k + 1 (mod p), and that for each natural number n there exists a unique k such that T(p + n) ≡ k (mod p). We calculate k for n = 0, 1, 2, 3, 4. We give an alternative proof for a result of Z. I. Borevich to the effect that T₀(p + n) ≡ T₀(n + 1) (mod p). | uk_UA |
| dc.identifier.citation | On the number of topologies on a finite set / M.Y. Kizmaz // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 1. — С. 50–57. — Бібліогр.: 8 назв. — англ. | uk_UA |
| dc.identifier.issn | 1726-3255 | |
| dc.identifier.other | 2010 MSC: Primary 11B50, Secondary 11B05. | |
| dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/188421 | |
| dc.language.iso | en | uk_UA |
| dc.publisher | Інститут прикладної математики і механіки НАН України | uk_UA |
| dc.relation.ispartof | Algebra and Discrete Mathematics | |
| dc.status | published earlier | uk_UA |
| dc.title | On the number of topologies on a finite set | uk_UA |
| dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: