On a model semilinear elliptic equation in the plane
dc.contributor.author | Gutlyanskii, V.Y. | |
dc.contributor.author | Nesmelova, O.V. | |
dc.contributor.author | Ryazanov, V.I. | |
dc.date.accessioned | 2018-07-17T17:51:44Z | |
dc.date.available | 2018-07-17T17:51:44Z | |
dc.date.issued | 2016 | |
dc.description.abstract | Assume that Ω is a regular domain in the complex plane C and A(z) is symmetric 2 × 2 matrix with measurable entries, det A = 1 and such that 1/K|ξ|² ≤ 〈A(z)ξ, ξ〉 ≤ K|ξ|², ξ ∊ R², 1 ≤ K < ∞. We study the blow-up problem for a model semilinear equation div (A(z)∇u) = e^u in Ω and show that the well-known Liouville–Bieberbach function solves the problem under an appropriate choice of the matrix A(z). The proof is based on the fact that every regular solution u can be expressed as u(z) = T(ω(z)) where ω : Ω → G stands for quasiconformal homeomorphism generated by the matrix A(z) and T is a solution of the semilinear weihted Bieberbach equation ∆T = m(w)e^T in G. Here the weight m(w) is the Jacobian determinant of the inverse mapping ω⁻¹(w). | uk_UA |
dc.identifier.citation | On a model semilinear elliptic equation in the plane / V.Y. Gutlyanskii, O.V. Nesmelova, V.I. Ryazanov // Український математичний вісник. — 2016. — Т. 13, № 1. — С. 91-105. — Бібліогр.: 18 назв. — англ. | uk_UA |
dc.identifier.issn | 1810-3200 | |
dc.identifier.other | 2010 MSC: 30C62, 35J61 | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/140893 | |
dc.language.iso | en | uk_UA |
dc.publisher | Інститут прикладної математики і механіки НАН України | uk_UA |
dc.relation.ispartof | Український математичний вісник | |
dc.status | published earlier | uk_UA |
dc.title | On a model semilinear elliptic equation in the plane | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 05-Gutlyanskii.pdf
- Розмір:
- 274.55 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: