Quiver Varieties with Multiplicities, Weyl Groups of Non-Symmetric Kac-Moody Algebras, and Painlevé Equations
dc.contributor.author | Yamakawa, D. | |
dc.date.accessioned | 2019-02-09T19:50:03Z | |
dc.date.available | 2019-02-09T19:50:03Z | |
dc.date.issued | 2010 | |
dc.description.abstract | To a finite quiver equipped with a positive integer on each of its vertices, we associate a holomorphic symplectic manifold having some parameters. This coincides with Nakajima's quiver variety with no stability parameter/framing if the integers attached on the vertices are all equal to one. The construction of reflection functors for quiver varieties are generalized to our case, in which these relate to simple reflections in the Weyl group of some symmetrizable, possibly non-symmetric Kac-Moody algebra. The moduli spaces of meromorphic connections on the rank 2 trivial bundle over the Riemann sphere are described as our manifolds. In our picture, the list of Dynkin diagrams for Painlevé equations is slightly different from (but equivalent to) Okamoto's | uk_UA |
dc.description.sponsorship | I am grateful to Philip Boalch for stimulating conversations, and to Professor Hiraku Nakajima for valuable comments. This work was supported by the grants ANR-08-BLAN-0317-01 of the Agence nationale de la recherche and JSPS Grant-in-Aid for Scientific Research (S 19104002). | uk_UA |
dc.identifier.citation | Quiver Varieties with Multiplicities, Weyl Groups of Non-Symmetric Kac-Moody Algebras, and Painlevé Equations / D. Yamakawa // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 31 назв. — англ. | uk_UA |
dc.identifier.issn | 1815-0659 | |
dc.identifier.other | 2010 Mathematics Subject Classification: 53D30; 16G20; 20F55; 34M55 | |
dc.identifier.other | DOI:10.3842/SIGMA.2010.087 | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/146522 | |
dc.language.iso | en | uk_UA |
dc.publisher | Інститут математики НАН України | uk_UA |
dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
dc.status | published earlier | uk_UA |
dc.title | Quiver Varieties with Multiplicities, Weyl Groups of Non-Symmetric Kac-Moody Algebras, and Painlevé Equations | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 087-Yamakawa.pdf
- Розмір:
- 525.69 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: