Algebraic theory of measure algebras

dc.contributor.authorBezushchak, O.O.
dc.contributor.authorOliynyk, B.V.
dc.date.accessioned2023-07-30T13:19:44Z
dc.date.available2023-07-30T13:19:44Z
dc.date.issued2023
dc.description.abstractA. Horn and A. Tarski initiated the abstract theory of measure algebras. Independently V. Sushchansky, B. Oliynyk and P. Cameron studied the direct limits of Hamming spaces. In the current paper, we introduce new examples of locally standard measure algebras and complete the classification of countable locally standard measure algebras. Countable unital locally standard measure algebras are in one-to-one correspondence with Steinitz numbers. Given a Steinitz number s such measure algebra is isomorphic to the Boolean algebra of s-periodic sequences of 0 and 1. Nonunital locally standard measure algebras are parametrized by pairs (s, r), where s is a Steinitz number and r is a real number greater or equal to 1. We also show that an arbitrary (not necessarily locally standard) measure algebra is embeddable in a metric ultraproduct of standard Hamming spaces. In other words, an arbitrary measure algebra is sofic.uk_UA
dc.description.abstractАбстрактна теорія алгебр з мірою була започаткована А. Хорном і А. Тарським. Незалежно від них В. Сущанський, Б. Олійник і П. Камерон досліджували прямі границі просторів Хемінга. У цій статті наведено нові приклади локально стандартних алгебр з мірою та завершено класифікацію зліченних локально стандартних алгебр з мірою. Зліченні унітальні локально стандартні алгебри з мірою знаходяться у взаємно однозначній відповідності з числами Стейніца. Для даного числа Стейніца s така алгебра з мірою ізоморфна булевій алгебрі s-періодичних послідовностей iз 0 та 1. Неунітальні локально стандартні алгебри з мірою параметризуються парами (s, r), де s — число Стейніца, а r — дійсне число, яке більше або дорівнює 1. Також показано, що довільна (не обов’язково локально стандартна) алгебра з мірою занурюється в метричний ультрадобуток стандартних алгебр з мірою. Іншими словами, довільна алгебра з мірою є софічною.uk_UA
dc.description.sponsorshipThe first author was supported by the program PAUSE (France), and was partly supported by UMR 5208 du CNRS and by MES of Ukraine: Grant for the perspective development of the scientific direction “Mathematical sciences and natural sciences” at TSNUK.uk_UA
dc.identifier.citationAlgebraic theory of measure algebras / O.O. Bezushchak, B.V. Oliynyk // Доповіді Національної академії наук України. — 2023. — № 2. — С. 3-9. — Бібліогр.: 13 назв. — англ.uk_UA
dc.identifier.issn1025-6415
dc.identifier.otherDOI: doi.org/10.15407/dopovidi2023.02.003
dc.identifier.udc512.552, 512.552.13, 512.563.2, 512.71
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/192996
dc.language.isoenuk_UA
dc.publisherВидавничий дім "Академперіодика" НАН Україниuk_UA
dc.relation.ispartofДоповіді НАН України
dc.statuspublished earlieruk_UA
dc.subjectМатематикаuk_UA
dc.titleAlgebraic theory of measure algebrasuk_UA
dc.title.alternativeАлгебраїчна теорія алгебр з міроюuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
03-Bezushchak.pdf
Розмір:
114.56 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: