A Family of Exactly Solvable Radial Quantum Systems on Space of Non-Constant Curvature with Accidental Degeneracy in the Spectrum

dc.contributor.authorRagnisco, O.
dc.contributor.authorRiglioni, D.
dc.date.accessioned2019-02-09T20:03:32Z
dc.date.available2019-02-09T20:03:32Z
dc.date.issued2010
dc.description.abstractA novel family of exactly solvable quantum systems on curved space is presented. The family is the quantum version of the classical Perlick family, which comprises all maximally superintegrable 3-dimensional Hamiltonian systems with spherical symmetry. The high number of symmetries (both geometrical and dynamical) exhibited by the classical systems has a counterpart in the accidental degeneracy in the spectrum of the quantum systems. This family of quantum problem is completely solved with the techniques of the SUSYQM (supersymmetric quantum mechanics). We also analyze in detail the ordering problem arising in the quantization of the kinetic term of the classical Hamiltonian, stressing the link existing between two physically meaningful quantizations: the geometrical quantization and the position dependent mass quantization.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Proceedings of the Workshop “Supersymmetric Quantum Mechanics and Spectral Design” (July 18–30, 2010, Benasque, Spain). The full collection is available at http://www.emis.de/journals/SIGMA/SUSYQM2010.html. We wish to thank our colleagues and friends A. Ballesteros, A. Enciso and F.J. Herranz for illuminating discussions and crucial suggestions about the content of this paper. The results reported here have been obtained in the framework of the INFN-MICINN collaboration 2010, and the related research activity has been partially supported by the Italian MIUR, through the PRIN 2008 research project n.20082K9KXZ/005.uk_UA
dc.identifier.citationA Family of Exactly Solvable Radial Quantum Systems on Space of Non-Constant Curvature with Accidental Degeneracy in the Spectrum / O. Ragnisco, D. Riglioni // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 22 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: (81S10; 81R12; 31C12)
dc.identifier.otherDOI:10.3842/SIGMA.2010.097
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/146528
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleA Family of Exactly Solvable Radial Quantum Systems on Space of Non-Constant Curvature with Accidental Degeneracy in the Spectrumuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
097-Ragnisco.pdf
Розмір:
215.29 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: