Modular Construction of Free Hyperplane Arrangements

dc.contributor.authorTsujie, Shuhei
dc.date.accessioned2025-12-17T14:31:31Z
dc.date.issued2020
dc.description.abstractIn this article, we study the freeness of hyperplane arrangements. One of the most investigated arrangements is a graphic arrangement. Stanley proved that a graphic arrangement is free if and only if the corresponding graph is chordal, and Dirac showed that a graph is chordal if and only if the graph is obtained by ''gluing'' complete graphs. We will generalize Dirac's construction to simple matroids with modular joins introduced by Ziegler and show that every arrangement whose associated matroid is constructed in the manner mentioned above is divisionally free. Moreover, we apply the result to arrangements associated with gain graphs and arrangements over finite fields.
dc.description.sponsorshipI greatly appreciate N. Nakashima, D. Suyama, and M. Torielli for valuable discussions, which provide the basis of Section 4. I also owe my deepest gratitude to the anonymous referees whose comments are very helpful in polishing the paper.
dc.identifier.citationModular Construction of Free Hyperplane Arrangements. Shuhei Tsujie. SIGMA 16 (2020), 080, 19 pages
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2020.080
dc.identifier.issn1815-0659
dc.identifier.other2020 Mathematics Subject Classification: 52C35; 05B35; 05C22; 13N15
dc.identifier.otherarXiv:1908.01535
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/210768
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleModular Construction of Free Hyperplane Arrangements
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
080-Tsujie.pdf
Розмір:
456.4 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: