Functional Relations on Anisotropic Potts Models: from Biggs Formula to the Tetrahedron Equation

dc.contributor.authorBychkov, Boris
dc.contributor.authorKazakov, Anton
dc.contributor.authorTalalaev, Dmitry
dc.date.accessioned2025-12-29T11:09:12Z
dc.date.issued2021
dc.description.abstractWe explore several types of functional relations on the family of multivariate Tutte polynomials: the Biggs formula and the star-triangle (𝑌 − Δ) transformation at the critical point 𝑛 = 2. We deduce the theorem of Matiyasevich and its inverse from the Biggs formula, and we apply this relation to construct the recursion on the parameter n. We provide two different proofs of the Zamolodchikov tetrahedron equation satisfied by the star-triangle transformation in the case of 𝑛 = 2 multivariate Tutte polynomial. We extend the latter to the case of valency 2 points and show that the Biggs formula and the star-triangle transformation commute.
dc.description.sponsorshipWe are thankful to V. Gorbounov for indicating to us the strategy of the first proof of the tetrahedron equation in the trigonometric case in Section 4.2. The research was supported by the Russian Science Foundation (project 20-61-46005). The authors thank the anonymous referees for their very useful comments, which have improved the paper a lot.
dc.identifier.citationFunctional Relations on Anisotropic Potts Models: from Biggs Formula to the Tetrahedron Equation. Boris Bychkov, Anton Kazakov and Dmitry Talalaev. SIGMA 17 (2021), 035, 30 pages
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2021.035
dc.identifier.issn1815-0659
dc.identifier.other2020 Mathematics Subject Classification: 82B20; 16T25; 05C31
dc.identifier.otherarXiv:2005.10288
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/211314
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleFunctional Relations on Anisotropic Potts Models: from Biggs Formula to the Tetrahedron Equation
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
035-Bychkov.pdf
Розмір:
1.4 MB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: