The Dirichlet problem for the Poisson type equations in the plane

dc.contributor.authorGutlyanskiĭ, V.Ya.
dc.contributor.authorNesmelova, O.V.
dc.date.accessioned2020-07-17T16:39:17Z
dc.date.available2020-07-17T16:39:17Z
dc.date.issued2020
dc.description.abstractWe present a new approach to the study of semilinear equations of the form div[A(z)▽u]=f(u), the diffusion term of which is the divergence uniform elliptic operator with measurable matrix functions A(z), whereas its reaction term f(u) is a continuous non-linear function. We establish a theorem on the existence of weak C(Ḋ)∩W¹′²loc(D) solutions of the Dirichlet problem with arbitrary continuous boundary data in any bounded domains D without degenerate boundary components and give applications to equations of mathematical physics in anisotropic media.uk_UA
dc.description.abstractЗапропоновано новий підхід до вивчення напівлінійних рівнянь виду div[A(z)∇u]=f(u), дифузний член яких є дивергентним рівномірно еліптичним оператором з вимірними матричними функціями A(z), тоді як його реакційний член f(u) є неперервною нелінійної функцією. Доведено теорему про існування слабких C(Ḋ)∩W¹′²loc(D) розв'язків задачі Діріхле з довільними неперервними граничними даними в довільних обмежених областях D без вироджених граничних компонент і дано застосування до рівнянь математичної фізики в анізотропних середовищах.uk_UA
dc.description.abstractПредложен новый подход к изучению полулинейных уравнений вида div[A(z)∇u]=f(u) , диффузионный член которых является дивергентным равномерно эллиптическим оператором с измеримыми матричными функциями A(z) , тогда как его реакционный член f(u) является непрерывной нелинейной функцией. Доказана теорема о существовании слабых C(Ḋ)∩W¹′²loc(D) решений задачи Дирихле с произвольными непрерывными граничными данными в любых ограниченных областях D без вырожденных граничных компонент и даны приложения к уравнениям математической физики в анизотропных средах.uk_UA
dc.description.sponsorshipThis work was partially supported by grants of the Ministry of Education and Science of Ukraine, project number is 0119U100421.uk_UA
dc.identifier.citationThe Dirichlet problem for the Poisson type equations in the plane / V.Ya. Gutlyanskiĭ, O.V. Nesmelova // Доповіді Національної академії наук України. — 2020. — № 5. — С. 10-16. — Бібліогр.: 15 назв. — англ.uk_UA
dc.identifier.issn1025-6415
dc.identifier.otherDOI: doi.org/10.15407/dopovidi2020.05.010
dc.identifier.udc517.58/.5892
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/170500
dc.language.isoenuk_UA
dc.publisherВидавничий дім "Академперіодика" НАН Україниuk_UA
dc.relation.ispartofДоповіді НАН України
dc.statuspublished earlieruk_UA
dc.subjectМатематикаuk_UA
dc.titleThe Dirichlet problem for the Poisson type equations in the planeuk_UA
dc.title.alternativeЗадача Діріхле для рівнянь типу Пуассона на площиніuk_UA
dc.title.alternativeЗадача Дирихле для уравнений типа Пуассона на плоскостиuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
04-Gutlyanskiĭ.pdf
Розмір:
120.03 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: