Galois Groups of Difference Equations of Order Two on Elliptic Curves

dc.contributor.authorDreyfus, T.
dc.contributor.authorRoques, J.
dc.date.accessioned2019-02-11T18:08:38Z
dc.date.available2019-02-11T18:08:38Z
dc.date.issued2015
dc.description.abstractThis paper is concerned with difference equations on elliptic curves. We establish some general properties of the difference Galois groups of equations of order two, and give applications to the calculation of some difference Galois groups. For instance, our results combined with a result from transcendence theory due to Schneider allow us to identify a large class of discrete Lamé equations with difference Galois group GL₂(C).uk_UA
dc.description.sponsorshipThis paper is a contribution to the Special Issue on Algebraic Methods in Dynamical Systems. The full collection is available at http://www.emis.de/journals/SIGMA/AMDS2014.html. Our original interest in dif ference equations on elliptic curves arose from discussions with JeanPierre Ramis some years ago. We thank Jean-Pierre Ramis and Michael Singer for interesting discussions. We thank the referees for their careful reading and useful suggestions. The first author is founded by the labex CIMI. The second author is partially funded by the French ANR project QDIFF (ANR-2010-JCJC-010501).uk_UA
dc.identifier.citationGalois Groups of Difference Equations of Order Two on Elliptic Curves / T. Dreyfus, J. Roques // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 35 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 39A06; 12H10
dc.identifier.otherDOI:10.3842/SIGMA.2015.003
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/146865
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleGalois Groups of Difference Equations of Order Two on Elliptic Curvesuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
003-Dreyfus.pdf
Розмір:
499.74 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: