3-D математическая модель температурного поля непрерывного слитка

dc.contributor.authorИванова, А.А.
dc.date.accessioned2017-09-19T15:25:59Z
dc.date.available2017-09-19T15:25:59Z
dc.date.issued2011
dc.description.abstractПредставлена трехмерная математическая модель нестационарного температурного поля непрерывнолитой заготовки и стенок кристаллизатора. Модель учитывает зависимости теплофизических параметров от температуры, наличие зазора между поверхностью слитка и стенкой кристаллизатора, характер водяного охлаждения кристаллизатора, зависимость граничных условий от конфигурации и режимов работы зоны вторичного охлаждения. Положение границы раздела фаз определяется из условий Стефана. Задача численно решена методом конечных разностей. Представлены и проанализированы результаты расчетов.uk_UA
dc.description.abstractПредставлена тривимiрна математична модель нестацiонарного температурного поля безперервнолитої заготовки й стiнок кристалiзатора. Модель враховує залежнiсть теплофiзичних параметрiв вiд температури, наявнiсть зазору мiж поверхнiстю злитка й стiнкой кристалiзатора, характер водяного охолодження кристалiзатора, залежнiсть граничних умов вiд конфiгурацiї й режимiв роботи зони вторинного охолодження. Положення межi розподiлу фаз визначається умовами Стефана. Задачу чисельно розв’язано методом кiнцевих рiзниць. Представлено i проаналiзовано результати розрахункiв.uk_UA
dc.description.abstractThe three-dimensional mathematical model of nonstationary temperature field of continuous ingot and mold walls is presented. Model takes into account dependence of thermophysical parameters on the temperature, the presence of the gap between the surface of the ingot and the mold wall, the mode of mold water-cooling, the dependence of the boundary conditions on the configuration and modes of the secondary cooling system. The position of the interface is determined from the Stefan condition. The numerical solution of the problem is performed by the finite-difference method. The results of numerical solution are presented and analysed.uk_UA
dc.identifier.citation3-D математическая модель температурного поля непрерывного слитка / А.А. Иванова // Труды Института прикладной математики и механики НАН Украины. — Донецьк: ІПММ НАН України, 2011. — Т. 23. — С. 100-109. — Бібліогр.: 10 назв. — рос.uk_UA
dc.identifier.issn1683-4720
dc.identifier.udc681.5:51-74
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/124053
dc.language.isoruuk_UA
dc.publisherІнститут прикладної математики і механіки НАН Україниuk_UA
dc.relation.ispartofТруды Института прикладной математики и механики
dc.statuspublished earlieruk_UA
dc.title3-D математическая модель температурного поля непрерывного слиткаuk_UA
dc.title.alternative3-D математична модель температурного поля безперервного злиткаuk_UA
dc.title.alternative3-D mathematical model of temperature field of continuous ingotuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
11-Ivanova.pdf
Розмір:
800.56 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: