Использование дифференциальных уравнений с запаздыванием на гексагональной решетке для моделирования иммуносенсоров

dc.contributor.authorМарценюк, В.П.
dc.contributor.authorСверстюк, А.С.
dc.contributor.authorГвоздецкая И.С.
dc.date.accessioned2021-10-26T17:24:36Z
dc.date.available2021-10-26T17:24:36Z
dc.date.issued2019
dc.description.abstractПредложена модель иммуносенсора, основанная на системе дифференциальных уравнений с запаздыванием на гексагональной решетке. Приведен результат условия локальной асимптотической стойкости эндемического состояния. Применен метод функционалов Ляпунова, сочетающий общий подход к их построению для моделей хищник жертва c использованием дифференциальных уравнений с запаздыванием на гексагональной решетке. Численным примером показано их влияние на устойчивость величины запаздывания, а именно переход от устойчивого фокуса через бифуркацию Хопфа к предельному циклу.uk_UA
dc.description.abstractЗапропоновано модель імуносенсора, яка ґрунтується на системі диференціальних рівнянь із запізненням на гексагональній решітці. Наведено результат умови локальної асимптотичної стійкості ендемічного стану. Використано метод функціоналів Ляпунова, який поєднує загальний підхід до побудови функціоналів Ляпунова моделей хижак жертва з використанням диференціальних рівнянь із запізненням на гексагональній решітці. Чисельний приклад показав вплив на стійкість величини запізнення, а саме, перехід від стійкого фокуса через біфуркацію Хопфа до граничного циклу.uk_UA
dc.description.abstractA model of immunosensor is proposed, which is based on the system of differential equations with time delay on a hexagonal lattice. The main result is conditions of local asymptotic stability of endemic state. To this end, the method of Lyapunov functionals is used. It combines the general approach to construction of Lyapunov functionals for the predator-prey models and differential equations with time delay on a hexagonal lattice. A numerical example shows the influence of time delay on stability, namely, we have transition from stable focus to the limit cycle through the Hopf bifurcation.uk_UA
dc.identifier.citationИспользование дифференциальных уравнений с запаздыванием на гексагональной решетке для моделирования иммуносенсоров / В.П. Марценюк, А.С. Сверстюк, И.С. Гвоздецкая // Кибернетика и системный анализ. — 2019. — Т. 56, № 4. — С. 119-132. — Бібліогр.: 21 назв. — рос.uk_UA
dc.identifier.issn1019-5262
dc.identifier.udc602.1:519.85:53.082.9:616-07
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/181016
dc.language.isoruuk_UA
dc.publisherІнститут кібернетики ім. В.М. Глушкова НАН Україниuk_UA
dc.relation.ispartofКибернетика и системный анализ
dc.statuspublished earlieruk_UA
dc.subjectСистемний аналізuk_UA
dc.titleИспользование дифференциальных уравнений с запаздыванием на гексагональной решетке для моделирования иммуносенсоровuk_UA
dc.title.alternativeВикористання диференціальних рівнянь із запізненням на гексагональній решітці для моделювання імуносенсорівuk_UA
dc.title.alternativeÀpplication of differential equations with time delay on a hexagonal lattice for immunosensor modelinguk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
12-Martsenyuk.pdf
Розмір:
219.54 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: