Generalization of primal superideals
| dc.contributor.author | Jaber, A. | |
| dc.date.accessioned | 2019-06-16T14:32:29Z | |
| dc.date.available | 2019-06-16T14:32:29Z | |
| dc.date.issued | 2016 | |
| dc.description.abstract | Let R be a commutative super-ring with unity 16= 0. A proper super ideal of R is a super ideaI of R such that I 6=R.Letφ:I(R)→I(R)∪ {∅}be any function, where I(R) denotes the set of all proper super ideals of R. A homogeneous element a∈R is φ-prime to Iifra∈I−φ(I) whereris a homogeneous element in R, then r∈I. We denote byνφ(I) the set of all homogeneous elements in R that are notφ-prime to I. We define Ito beφ-primal if the set P=([(νφ(I))0+ (νφ(I))1∪ {0}] +φ(I) : ifφ6=φ∅(νφ(I))0+ (νφ(I))1: ifφ=φ∅forms a super ideal of R. For example if we takeφ∅(I) =∅(resp.φ0(I) = 0), aφ-primal superideal is a primal super ideal (resp., a weakly primal super ideal). In this paper we study several generalizations of primal super ideals of R and their properties. | uk_UA |
| dc.identifier.citation | Generalization of primal superideals / A. Jaber // Algebra and Discrete Mathematics. — 2016. — Vol. 21, № 2. — С. 202-213. — Бібліогр.: 13 назв. — англ. | uk_UA |
| dc.identifier.issn | 1726-3255 | |
| dc.identifier.other | 2010 MSC:13A02, 16D25, 16W50. | |
| dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/155239 | |
| dc.language.iso | en | uk_UA |
| dc.publisher | Інститут прикладної математики і механіки НАН України | uk_UA |
| dc.relation.ispartof | Algebra and Discrete Mathematics | |
| dc.status | published earlier | uk_UA |
| dc.title | Generalization of primal superideals | uk_UA |
| dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: