From Conformal Group to Symmetries of Hypergeometric Type Equations

dc.contributor.authorDereziński, J.
dc.contributor.authorMajewski, P.
dc.date.accessioned2019-02-18T15:06:11Z
dc.date.available2019-02-18T15:06:11Z
dc.date.issued2016
dc.description.abstractWe show that properties of hypergeometric type equations become transparent if they are derived from appropriate 2nd order partial differential equations with constant coefficients. In particular, we deduce the symmetries of the hypergeometric and Gegenbauer equation from conformal symmetries of the 4- and 3-dimensional Laplace equation. We also derive the symmetries of the confluent and Hermite equation from the so-called Schrödinger symmetries of the heat equation in 2 and 1 dimension. Finally, we also describe how properties of the ₀F₁ equation follow from the Helmholtz equation in 2 dimensions.uk_UA
dc.description.sponsorshipWe thank Tom Koornwinder and anonymous referees for useful remarks. J.D. gratefully acknowledges financial support of the National Science Center, Poland, under the grant UMO2014/15/B/ST1/00126.uk_UA
dc.identifier.citationFrom Conformal Group to Symmetries of Hypergeometric Type Equations / J. Dereziński, P. Majewski // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 48 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 35J05; 33Cxx; 35B06
dc.identifier.otherDOI:10.3842/SIGMA.2016.108
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/148546
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleFrom Conformal Group to Symmetries of Hypergeometric Type Equationsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
108-Dereziński.pdf
Розмір:
798.02 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: