From Conformal Group to Symmetries of Hypergeometric Type Equations
| dc.contributor.author | Dereziński, J. | |
| dc.contributor.author | Majewski, P. | |
| dc.date.accessioned | 2019-02-18T15:06:11Z | |
| dc.date.available | 2019-02-18T15:06:11Z | |
| dc.date.issued | 2016 | |
| dc.description.abstract | We show that properties of hypergeometric type equations become transparent if they are derived from appropriate 2nd order partial differential equations with constant coefficients. In particular, we deduce the symmetries of the hypergeometric and Gegenbauer equation from conformal symmetries of the 4- and 3-dimensional Laplace equation. We also derive the symmetries of the confluent and Hermite equation from the so-called Schrödinger symmetries of the heat equation in 2 and 1 dimension. Finally, we also describe how properties of the ₀F₁ equation follow from the Helmholtz equation in 2 dimensions. | uk_UA |
| dc.description.sponsorship | We thank Tom Koornwinder and anonymous referees for useful remarks. J.D. gratefully acknowledges financial support of the National Science Center, Poland, under the grant UMO2014/15/B/ST1/00126. | uk_UA |
| dc.identifier.citation | From Conformal Group to Symmetries of Hypergeometric Type Equations / J. Dereziński, P. Majewski // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 48 назв. — англ. | uk_UA |
| dc.identifier.issn | 1815-0659 | |
| dc.identifier.other | 2010 Mathematics Subject Classification: 35J05; 33Cxx; 35B06 | |
| dc.identifier.other | DOI:10.3842/SIGMA.2016.108 | |
| dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/148546 | |
| dc.language.iso | en | uk_UA |
| dc.publisher | Інститут математики НАН України | uk_UA |
| dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
| dc.status | published earlier | uk_UA |
| dc.title | From Conformal Group to Symmetries of Hypergeometric Type Equations | uk_UA |
| dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 108-Dereziński.pdf
- Розмір:
- 798.02 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: