Critical thermodynamics of two-dimensional N-vector cubic model in the five-loop approximation

dc.contributor.authorCalabrese, P.
dc.contributor.authorOrlov, E.V.
dc.contributor.authorPakhnin, D.V.
dc.contributor.authorSokolov, A.I.
dc.date.accessioned2017-06-07T04:54:36Z
dc.date.available2017-06-07T04:54:36Z
dc.date.issued2005
dc.description.abstractThe critical behavior of the two-dimensional N-vector cubic model is studied within the field-theoretical renormalization-group (RG) approach. The β functions and critical exponents are calculated in the five-loop approximation, RG series obtained are resummed using Pade-Borel-Leroy and ´ conformal mapping techniques. It is found that for N = 2 the continuous line of fixed points is well reproduced by the resummed RG series and an account for the five-loop terms makes the lines of zeros of both β functions closer to each other. For N > 3 the five-loop contributions are shown to shift the cubic fixed point, given by the four-loop approximation, towards the Ising fixed point. This confirms the idea that the existence of the cubic fixed point in two dimensions under N >2 is an artifact of the perturbative analysis. In the case N = 0 the results obtained are compatible with the conclusion that the impure critical behavior is controlled by the Ising fixed point.uk_UA
dc.description.abstractВ рамках теоретико-польового підходу ренормалізаційної групи (РГ) вивчається критична поведінка двовимірної N-векторної кубічної моделі. β функції і критичні показники обчислюються в п’ятипетлевому наближенні, отримані РГ ряди пересумовуються з використанням техніки Паде-Бореля-Лєруа і конформного перетворення. Знайдено, що для N = 2 неперервна лінія нерухомих точок добре відтворюється пересумованими РГ рядами і врахування п’ятипетлевих членів робить лінії нулів обох β функцій ближчими один до одного. Показано, що для N > 3 п’яти-петлеві внески зсувають кубічну нерухому точку, отриману в чотири-петлевому наближенні, до нерухомої точки Ізинґа. Це підтверджує ідею, що існування кубічної нерухомої точки в двох вимірах під N > 2 є результатом пертурбативного аналізу. У випадку N = 0 отримані результати є сумісні з висновком, що критична поведінка, пов’язана з домішками, контролюється нерухомою точкою Ізинґа.uk_UA
dc.description.sponsorshipWe are grateful to Pietro Parruccini and Ettore Vicari for discussions. The authors acknowledge the financial support of EPSRC under Grant No. GR/R83712/01 (P.C.), the Russian Foundation for Basic Research under Grant No. 04–02–16189 (A.I.S., E.V.O., D.V.P.), and the Ministry of Education of Russian Federation under Grant No. E02–3.2–266 (A.I.S., E.V.O., D.V.P.). A.I.S. has much benefitted from the warm hospitality of Scuola Normale Superiore and Dipartimento di Fisica dell’Universit´a di Pisa, where the major part of this research was doneuk_UA
dc.identifier.citationCritical thermodynamics of two-dimensional N-vector cubic model in the five-loop approximation / P. Calabrese, E.V. Orlov, D.V. Pakhnin, A.I. Sokolov // Condensed Matter Physics. — 2005. — Т. 8, № 1(41). — С. 193–211. — Бібліогр.: 31 назв. — англ.uk_UA
dc.identifier.issn1607-324X
dc.identifier.otherPACS: 75.10.Hk, 05.70.Jk, 64.60.Fr, 11.10.Kk
dc.identifier.otherDOI:10.5488/CMP.8.1.193
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/119483
dc.language.isoenuk_UA
dc.publisherІнститут фізики конденсованих систем НАН Україниuk_UA
dc.relation.ispartofCondensed Matter Physics
dc.statuspublished earlieruk_UA
dc.titleCritical thermodynamics of two-dimensional N-vector cubic model in the five-loop approximationuk_UA
dc.title.alternativeКритична термодинаміка двовимірної N-векторної кубічної моделі в п’яти-петлевому наближенніuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
15-Calabrese.pdf
Розмір:
208.33 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: