Perspectives on the Asymptotic Geometry of the Hitchin Moduli Space

dc.contributor.authorFredrickson, L.
dc.date.accessioned2025-12-02T09:30:52Z
dc.date.issued2019
dc.description.abstractWe survey some recent developments in the asymptotic geometry of the Hitchin moduli space, starting with an introduction to the Hitchin moduli space and hyperkähler geometry.
dc.description.sponsorshipThese notes are based on a 3-hour mini-course aimed at early graduate students, given on November 11-12, 2017, at UIC. This course was part of the workshop "Workshop on the geometry and physics of Higgs bundles" and the following conference "Current Trends for Spectral Data III" organized by Laura Schaposnik. (The notes have been updated to include a survey of results through October 2018.) My trip for the mini-course was funded by: the UIC NSF RTG grant DMS-1246844; L.P. Schaposnik’s UIC Start-up fund; and NSF DMS 1107452, 1107263, 1107367 RNMS: GEometric structures And Representation varieties (the GEAR Network). I thank Laura Schaposnik for organizing the events and for her encouragement to contribute these notes. I thank Rafe Mazzeo for many discussions about the asymptotic geometry of the Hitchin moduli space, and Rafe Mazzeo, Steve Rayan, and the anonymous referees for their useful suggestions and comments.
dc.identifier.citationPerspectives on the Asymptotic Geometry of the Hitchin Moduli Space / L. Fredrickson // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 38 назв. — англ.
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2019.018
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 53C07; 53C26
dc.identifier.otherarXiv: 1809.05735
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/210057
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titlePerspectives on the Asymptotic Geometry of the Hitchin Moduli Space
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
018-Fredrickson.pdf
Розмір:
952.24 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: