A Solvable Deformation of Quantum Mechanics

dc.contributor.authorGrassi, A.
dc.contributor.authorMariño, M.
dc.date.accessioned2025-12-02T09:27:43Z
dc.date.issued2019
dc.description.abstractThe conventional Hamiltonian H=p²+VN(x), where the potential VN(x) is a polynomial of degree N, has been studied intensively since the birth of quantum mechanics. In some cases, its spectrum can be determined by combining the WKB method with resummation techniques. In this paper, we point out that the deformed Hamiltonian H = 2cosh(p) + VN(x) is exactly solvable for any potential: a conjectural exact quantization condition, involving well-defined functions, can be written down in closed form, and determines the spectrum of bound states and resonances. In particular, no resummation techniques are needed. This Hamiltonian is obtained by quantizing the Seiberg-Witten curve of N=2 Yang-Mills theory, and the exact quantization condition follows from the correspondence between spectral theory and topological strings, after taking a suitable four-dimensional limit. In this formulation, conventional quantum mechanics emerges in a scaling limit near the Argyres-Douglas superconformal point in moduli space. Although our deformed version of quantum mechanics is in many respects similar to the conventional version, it also displays new phenomena, like spontaneous parity symmetry breaking.
dc.description.sponsorshipWe would like to thank Yoan Emery, Giovanni Felder, Matthias Gaberdiel, Jie Gu, Nikita Nekrasov, Massimiliano Ronzani, and Szabolcs Zakany for useful discussions. We are particularly thankful to Jie Gu for extending the Bender-Wu package to Hamiltonians like the one we study in this paper. The work of M.M. is supported in part by the Fonds National Suisse, subsidies 200021-156995 and 200020-141329, and by the NCCR 51NF40-141869 "The Mathematics of Physics" (SwissMAP).
dc.identifier.citationA Solvable Deformation of Quantum Mechanics / A. Grassi, M. Mariño // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 111 назв. — англ.
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2019.025
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 14N35; 58C40; 51P05; 81T13; 81Q60; 82B23; 81Q80
dc.identifier.otherarXiv: 1806.01407
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/210050
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleA Solvable Deformation of Quantum Mechanics
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
025-Grassi.pdf
Розмір:
1.41 MB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: