Integrable 𝜀-Models, 4d Chern-Simons Theory and Affine Gaudin Models. I. Lagrangian Aspects
| dc.contributor.author | Lacroix, Sylvain | |
| dc.contributor.author | Vicedo, Benoît | |
| dc.date.accessioned | 2025-12-30T15:56:53Z | |
| dc.date.issued | 2021 | |
| dc.description.abstract | We construct the actions of a very broad family of 2d integrable σ-models. Our starting point is a universal 2d action obtained in [arXiv:2008.01829] using the framework of Costello and Yamazaki based on 4d Chern-Simons theory. This 2d action depends on a pair of 2d fields 𝘩 and 𝓛, with 𝓛 depending rationally on an auxiliary complex parameter, which are tied together by a constraint. When the latter can be solved for 𝓛 in terms of 𝘩, this produces a 2d integrable field theory for the 2d field h whose Lax connection is given by 𝓛(𝘩). We construct a general class of solutions to this constraint and show that the resulting 2d integrable field theories can all naturally be described as 𝜀-models. | |
| dc.description.sponsorship | S.L. would like to thank B. Hoare for useful discussions. The work of S.L. is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germanys Excellence Strategy EXC 2121 Quantum Universe 390833306. | |
| dc.identifier.citation | Integrable 𝜀-Models, 4d Chern-Simons Theory and Affine Gaudin Models. I. Lagrangian Aspects. Sylvain Lacroix and Benoît Vicedo. SIGMA 17 (2021), 058, 45 pages | |
| dc.identifier.doi | https://doi.org/10.3842/SIGMA.2021.058 | |
| dc.identifier.issn | 1815-0659 | |
| dc.identifier.other | 2020 Mathematics Subject Classification: 17B80; 37K05; 37K10 | |
| dc.identifier.other | arXiv:2011.13809 | |
| dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/211365 | |
| dc.language.iso | en | |
| dc.publisher | Інститут математики НАН України | |
| dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
| dc.status | published earlier | |
| dc.title | Integrable 𝜀-Models, 4d Chern-Simons Theory and Affine Gaudin Models. I. Lagrangian Aspects | |
| dc.type | Article |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 058-Lacroix.pdf
- Розмір:
- 772.9 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: