A Note on the Derivatives of Isotropic Positive Definite Functions on the Hilbert Sphere
| dc.contributor.author | Jäger, J. | |
| dc.date.accessioned | 2025-12-05T09:30:55Z | |
| dc.date.issued | 2019 | |
| dc.description.abstract | In this note, we give a recursive formula for the derivatives of isotropic positive definite functions on the Hilbert sphere. We then use it to prove a conjecture stated by Trübner and Ziegel, which says that for a positive definite function on the Hilbert sphere to be in C²ˡ([0,π]), it is necessary and sufficient for its ∞ Schoenberg sequence to satisfy ∑ₘ₌₀ ∞ aₘmˡ < ∞. | |
| dc.description.sponsorship | The author was a post-doctoral fellow funded by Justus Liebig University during the development of this research. I would like to express my gratitude to Professor M. Buhmann for his helpful comments on the paper. Thanks are also due to the anonymous referees for their thorough advice on how to improve this note. | |
| dc.identifier.citation | A Note on the Derivatives of Isotropic Positive Definite Functions on the Hilbert Sphere / J. Jäger // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 23 назв. — англ. | |
| dc.identifier.doi | https://doi.org/10.3842/SIGMA.2019.081 | |
| dc.identifier.issn | 1815-0659 | |
| dc.identifier.other | 2010 Mathematics Subject Classification: 33B10; 33C45; 42A16; 42A82; 42C10 | |
| dc.identifier.other | arXiv: 1905.08655 | |
| dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/210307 | |
| dc.language.iso | en | |
| dc.publisher | Інститут математики НАН України | |
| dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
| dc.status | published earlier | |
| dc.title | A Note on the Derivatives of Isotropic Positive Definite Functions on the Hilbert Sphere | |
| dc.type | Article |
Файли
Оригінальний контейнер
1 - 1 з 1
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: