Construction of self-dual binary [2²ⁿ,2²ⁿ⁻¹,2ⁿ]-codes
| dc.contributor.author | Hannusch, C. | |
| dc.contributor.author | Lakatos, P. | |
| dc.date.accessioned | 2019-06-16T10:56:43Z | |
| dc.date.available | 2019-06-16T10:56:43Z | |
| dc.date.issued | 2016 | |
| dc.description.abstract | The binary Reed-Muller code RM(m−n,m) corresponds to the n-th power of the radical of GF(2)[G], where G is an elementary abelian group of order 2m. Self-dual RM-codes (i.e. some powers of the radical of the previously mentioned group algebra) exist only for odd m. The group algebra approach enables us to find a self-dual code for even m=2n in the radical of the previously mentioned group algebra with similarly good parameters as the self-dual RM codes. | uk_UA |
| dc.description.sponsorship | Research of the first author was partially supported by funding of EU’s FP7/2007-2013 grant No. 318202. | uk_UA |
| dc.identifier.citation | Construction of self-dual binary [2²ⁿ,2²ⁿ⁻¹,2ⁿ]-codes / C. Hannusch, P. Lakatos // Algebra and Discrete Mathematics. — 2016. — Vol. 21, № 1. — С. 59-68. — Бібліогр.: 15 назв. — англ. | uk_UA |
| dc.identifier.issn | 1726-3255 | |
| dc.identifier.other | 2010 MSC:94B05, 11T71, 20C05. | |
| dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/155203 | |
| dc.language.iso | en | uk_UA |
| dc.publisher | Інститут прикладної математики і механіки НАН України | uk_UA |
| dc.relation.ispartof | Algebra and Discrete Mathematics | |
| dc.status | published earlier | uk_UA |
| dc.title | Construction of self-dual binary [2²ⁿ,2²ⁿ⁻¹,2ⁿ]-codes | uk_UA |
| dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 06-Hannusch.pdf
- Розмір:
- 319.09 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: