Contractions of 2D 2nd Order Quantum Superintegrable Systems and the Askey Scheme for Hypergeometric Orthogonal Polynomials
dc.contributor.author | Kalnins, E.G. | |
dc.contributor.author | Miller Jr., W. | |
dc.contributor.author | Post, S. | |
dc.date.accessioned | 2019-02-21T07:03:50Z | |
dc.date.available | 2019-02-21T07:03:50Z | |
dc.date.issued | 2013 | |
dc.description.abstract | We show explicitly that all 2nd order superintegrable systems in 2 dimensions are limiting cases of a single system: the generic 3-parameter potential on the 2-sphere, S9 in our listing. We extend the Wigner-Inönü method of Lie algebra contractions to contractions of quadratic algebras and show that all of the quadratic symmetry algebras of these systems are contractions of that of S9. Amazingly, all of the relevant contractions of these superintegrable systems on flat space and the sphere are uniquely induced by the well known Lie algebra contractions of e(2) and so(3). By contracting function space realizations of irreducible representations of the S9 algebra (which give the structure equations for Racah/Wilson polynomials) to the other superintegrable systems, and using Wigner's idea of ''saving'' a representation, we obtain the full Askey scheme of hypergeometric orthogonal polynomials. This relationship directly ties the polynomials and their structure equations to physical phenomena. It is more general because it applies to all special functions that arise from these systems via separation of variables, not just those of hypergeometric type, and it extends to higher dimensions. | uk_UA |
dc.description.sponsorship | This work was partially supported by a grant from the Simons Foundation (# 208754 to Willard Miller, Jr.). The authors would also like to thank the referees for their valuable comments and suggestions. | uk_UA |
dc.identifier.citation | Contractions of 2D 2nd Order Quantum Superintegrable Systems and the Askey Scheme for Hypergeometric Orthogonal Polynomials / E.G. Kalnins, W. Miller Jr., S. Post // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 40 назв. — англ. | uk_UA |
dc.identifier.issn | 1815-0659 | |
dc.identifier.other | 2010 Mathematics Subject Classification: 33C45; 33D45; 33D80; 81R05; 81R12 | |
dc.identifier.other | DOI: http://dx.doi.org/10.3842/SIGMA.2013.057 | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/149341 | |
dc.language.iso | en | uk_UA |
dc.publisher | Інститут математики НАН України | uk_UA |
dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
dc.status | published earlier | uk_UA |
dc.title | Contractions of 2D 2nd Order Quantum Superintegrable Systems and the Askey Scheme for Hypergeometric Orthogonal Polynomials | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 057-Kalnins.pdf
- Розмір:
- 638.73 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: