Simplified Expressions of the Multi-Indexed Laguerre and Jacobi Polynomials

dc.contributor.authorOdake, S.
dc.contributor.authorSasaki, R.
dc.date.accessioned2019-02-18T16:12:55Z
dc.date.available2019-02-18T16:12:55Z
dc.date.issued2017
dc.description.abstractThe multi-indexed Laguerre and Jacobi polynomials form a complete set of orthogonal polynomials. They satisfy second-order differential equations but not three term recurrence relations, because of the 'holes' in their degrees. The multi-indexed Laguerre and Jacobi polynomials have Wronskian expressions originating from multiple Darboux transformations. For the ease of applications, two different forms of simplified expressions of the multi-indexed Laguerre and Jacobi polynomials are derived based on various identities. The parity transformation property of the multi-indexed Jacobi polynomials is derived based on that of the Jacobi polynomial.uk_UA
dc.description.sponsorshipS.O. is supported in part by Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), No. 25400395.uk_UA
dc.identifier.citationSimplified Expressions of the Multi-Indexed Laguerre and Jacobi Polynomials / S. Odake, R. Sasaki // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 24 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 42C05; 33C45; 34A05
dc.identifier.otherDOI:10.3842/SIGMA.2017.020
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/148580
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleSimplified Expressions of the Multi-Indexed Laguerre and Jacobi Polynomialsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
020-Odake.pdf
Розмір:
338.5 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: