A new test for unimodality
dc.contributor.author | Andrushkiw, R.I. | |
dc.contributor.author | Klyushin, D.D. | |
dc.contributor.author | Petunin, Y.I. | |
dc.date.accessioned | 2009-11-25T10:59:23Z | |
dc.date.available | 2009-11-25T10:59:23Z | |
dc.date.issued | 2008 | |
dc.description.abstract | A distribution function (d.f.) of a random variable is unimodal if there exists a number such that d.f. is convex left from this number and is concave right from this number. This number is called a mode of d.f. Since one may have more than one mode, a mode is not necessarily unique. The purpose of this paper is to construct nonparametric tests for the unimodality of d.f. based on a sample obtained from the general population of values of the random variable by simple sampling. The tests proposed are significance tests such that the unimodality of d.f. can be guaranteed with some probability (confidence level). | en_US |
dc.identifier.citation | A new test for unimodality / R.I. Andrushkiw, D.D. Klyushin, Y.I. Petunin // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 1. — С. 1–6. — Бібліогр.: 12 назв.— англ. | en_US |
dc.identifier.issn | 0321-3900 | |
dc.identifier.udc | 519.21 | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/4530 | |
dc.language.iso | en | en_US |
dc.publisher | Інститут математики НАН України | en_US |
dc.status | published earlier | en_US |
dc.title | A new test for unimodality | en_US |
dc.type | Article | en_US |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 2008_14_1_1.pdf
- Розмір:
- 204.66 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 1.82 KB
- Формат:
- Item-specific license agreed upon to submission
- Опис: