A new test for unimodality

dc.contributor.authorAndrushkiw, R.I.
dc.contributor.authorKlyushin, D.D.
dc.contributor.authorPetunin, Y.I.
dc.date.accessioned2009-11-25T10:59:23Z
dc.date.available2009-11-25T10:59:23Z
dc.date.issued2008
dc.description.abstractA distribution function (d.f.) of a random variable is unimodal if there exists a number such that d.f. is convex left from this number and is concave right from this number. This number is called a mode of d.f. Since one may have more than one mode, a mode is not necessarily unique. The purpose of this paper is to construct nonparametric tests for the unimodality of d.f. based on a sample obtained from the general population of values of the random variable by simple sampling. The tests proposed are significance tests such that the unimodality of d.f. can be guaranteed with some probability (confidence level).en_US
dc.identifier.citationA new test for unimodality / R.I. Andrushkiw, D.D. Klyushin, Y.I. Petunin // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 1. — С. 1–6. — Бібліогр.: 12 назв.— англ.en_US
dc.identifier.issn0321-3900
dc.identifier.udc519.21
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/4530
dc.language.isoenen_US
dc.publisherІнститут математики НАН Україниen_US
dc.statuspublished earlieren_US
dc.titleA new test for unimodalityen_US
dc.typeArticleen_US

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
2008_14_1_1.pdf
Розмір:
204.66 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
1.82 KB
Формат:
Item-specific license agreed upon to submission
Опис: