On Gauss-Bonnet Curvatures

dc.contributor.authorLabbi, M.L.
dc.date.accessioned2019-02-13T19:06:09Z
dc.date.available2019-02-13T19:06:09Z
dc.date.issued2007
dc.description.abstractThe (2k)-th Gauss-Bonnet curvature is a generalization to higher dimensions of the (2k)-dimensional Gauss-Bonnet integrand, it coincides with the usual scalar curvature for k =1. The Gauss-Bonnet curvatures are used in theoretical physics to describe gravity in higher dimensional space times where they are known as the Lagrangian of Lovelock gravity, Gauss-Bonnet Gravity and Lanczos gravity. In this paper we present various aspects of these curvature invariants and review their variational properties. In particular, we discuss natural generalizations of the Yamabe problem, Einstein metrics and minimal submanifolds.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Proceedings of the 2007 Midwest Geometry Conference in honor of Thomas P. Branson. The author would like to thank the referees for useful comments and especially for indicating me the related work of Patterson.uk_UA
dc.identifier.citationOn Gauss-Bonnet Curvatures / M.L. Labbi // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 38 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2000 Mathematics Subject Classification: 53C20; 53C25
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/147209
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleOn Gauss-Bonnet Curvaturesuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
118-Labbi.pdf
Розмір:
237.92 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: