Некоторые программные среды аналитики больших данных

dc.contributor.authorУрсатьев, А.А.
dc.date.accessioned2017-02-06T15:28:50Z
dc.date.available2017-02-06T15:28:50Z
dc.date.issued2016
dc.description.abstractИзложены концептуальные вопросы построения сред обработки данных – кластерных систем на программной платформе Hadoop. Описана инфраструктура HadoopMapReduce для организации параллельных распределенных вычислений над данны ми и показано эволюционное преобразование платформы Hadoop применительно к интерактивным и потоковым динамиче ским нагрузкам.uk_UA
dc.description.abstractВикладено концептуальні питання побудови середовищ обробки даних – кластерных систем на програмній платформі Hadoop. Описано інфраструктуру HadoopMapReduce для організації паралельних розподілених обчислень над даними і показано ево люційне перетворення платформи Hadoop стосовно інтерактивних і потокових динамічних навантажень.uk_UA
dc.description.abstractimprovement of the traditional processing technology and to create the advanced analytics environments. The conceptual issues of data media construction, in particular, on the Hadoop cluster system software platform is presented. The HadoopMapReduce infrastructure is described for the parallel distributed computing on the data and the evolutionary transformation of Hadoop platform using the infrastructure and streaming dynamic loads, as well as HadoopMapReduce infrastructure constraints. It is shown that an introduction of YARN (Yet Another Resource Negotiator) on the computing Hadoop platform allows to perform the different workloads in a linearly scalable cluster Hadoop YARN (Hadoop 2.0), achieving calculations of the high efficiency. Frameworks, Spark, Tez and Storm use the possibility of YARN . The components that make a total Hadoop 2.0 de facto the standard technology for working with Big Data are analyzed. These are the constructions Hive for design-oriented interactive queries to SQL-like language HQL (Hive query language) and working with large data storage; Pig – a high-level procedure language Pig Latin, designed for accessing the semidistributed lennym datasets; HBase – distributed non-relational DBMS, working effectively with the individual records in real time; Apache Accumulo – oriented on a high level of safety distributed, scalable data repository with the strict requirements of the information and personal data protection. The problems of large data efficiently various types download of Hadoop ecosystem using Hive and Pig. A comparative analysis of ELT (extract-load-transform) and ETLuk_UA
dc.identifier.citationНекоторые программные среды аналитики больших данных / А.А. Урсатьев // Управляющие системы и машины. — 2016. — № 3. — С. 29-42. — Бібліогр.: 33 назв. — рос.uk_UA
dc.identifier.issn0130-5395
dc.identifier.udc004.7:004.75:004.9:004.738.5
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/113330
dc.language.isoruuk_UA
dc.publisherМіжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН Україниuk_UA
dc.relation.ispartofУправляющие системы и машины
dc.statuspublished earlieruk_UA
dc.subjectМетоды и средства обработки данных и знанийuk_UA
dc.titleНекоторые программные среды аналитики больших данныхuk_UA
dc.title.alternativeДеякі програмні середовища аналітики великих данихuk_UA
dc.title.alternativeSomeFrameworks forAnalytics Big Datauk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
4-Oursatyev.pdf
Розмір:
1.02 MB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: