Моделирование плотной упаковки 3D-объектов

dc.contributor.authorСтоян, Ю.Г.
dc.contributor.authorСёмкин, В.В.
dc.contributor.authorЧугай, А.М.
dc.date.accessioned2018-03-22T17:16:06Z
dc.date.available2018-03-22T17:16:06Z
dc.date.issued2016
dc.description.abstractПредставлена концепция Ф-функций и квази Ф-функций как эффективных средств для моделирования трехмерных задач упаковки выпуклых объектов, допускающих непрерывные повороты и трансляции. Формулируется математическая модель задачи плотной упаковки выпуклых объектов и рассматриваются ее основные свойства. Рассмотрен метод решения, который включает следующие этапы: построение начальных точек, вычисление локальных экстремумов и переход из одного локального минимума к другому. Предложенный подход к решению задачи является эффективным для решения оптимизационных задач упаковки. Приведены численные экперименты.uk_UA
dc.description.abstractНаведено концепцію Ф-функцій і квазі Ф-функцій як еффективного засобу для моделювання тривимірних задач пакування опуклих об’єктів, що допускають неперевні повороти і трансляції. Сформульовано математичну модель задачі щільного пакування опуклих об’єктів і розглянуто її основні властивості. Запропоновано метод розв’язання, який включає наступні етапи: побудову початкових точок, обчислення локальних екстремумів і перехід з одного локального мінімуму до іншого. Обчислювальні експерименти показали, що запропонований підхід є ефективним для розв’язання оптимізаційних задач пакування. Наведено чисельні експерименти.uk_UA
dc.description.abstractThe paper represents the concept of Ф-functions and quasi Ф-functions as an efficient tool for mathematical modeling of three-dimensional packing problems for convex geometrical objects with continuous translations and rotations. A mathematical model of packing convex geometrical objects is formulated and its basic properties are considered. A method is proposed to solve it, which includes the following stages: construction of starting points, computation of local extrema, and a jump from one local minimum to another. The computating experiments have shown that the solution approach is efficient to solve optimization packing problems. Numerical examples are given.uk_UA
dc.identifier.citationМоделирование плотной упаковки 3D-объектов / Ю.Г. Стоян, В.В. Сёмкин, А.М. Чугай // Кибернетика и системный анализ. — 2016. — Т. 52, № 2. — С. 137-146. — Бібліогр.: 15 назв. — рос.uk_UA
dc.identifier.issn0023-1274
dc.identifier.udc519.85
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/131419
dc.language.isoruuk_UA
dc.publisherІнститут кібернетики ім. В.М. Глушкова НАН Україниuk_UA
dc.relation.ispartofКибернетика и системный анализ
dc.statuspublished earlieruk_UA
dc.subjectСистемный анализuk_UA
dc.titleМоделирование плотной упаковки 3D-объектовuk_UA
dc.title.alternativeМоделювання щільного пакування 3D-об’єктівuk_UA
dc.title.alternativeModeling densely packed systems of three-dimensional objectsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
15-Stoyan.pdf
Розмір:
175.2 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: