'Magic' Configurations of Three-Qubit Observables and Geometric Hyperplanes of the Smallest Split Cayley Hexagon
dc.contributor.author | Saniga, M. | |
dc.contributor.author | Planat, M. | |
dc.contributor.author | Pracna, P. | |
dc.contributor.author | Lévay, P. | |
dc.date.accessioned | 2019-02-18T17:45:05Z | |
dc.date.available | 2019-02-18T17:45:05Z | |
dc.date.issued | 2012 | |
dc.description.abstract | Recently Waegell and Aravind [J. Phys. A: Math. Theor. 45 (2012), 405301, 13 pages] have given a number of distinct sets of three-qubit observables, each furnishing a proof of the Kochen-Specker theorem. Here it is demonstrated that two of these sets/configurations, namely the 18₂−12₃ and 2₄14₂−4₃6₄ ones, can uniquely be extended into geometric hyperplanes of the split Cayley hexagon of order two, namely into those of types V₂₂(37;0,12,15,10) and V₄(49;0,0,21,28) in the classification of Frohardt and Johnson [Comm. Algebra 22 (1994), 773-797]. Moreover, employing an automorphism of order seven of the hexagon, six more replicas of either of the two configurations are obtained. | uk_UA |
dc.description.sponsorship | This work was partially supported by the VEGA grant agency project 2/0098/10. | uk_UA |
dc.identifier.citation | 'Magic' Configurations of Three-Qubit Observables and Geometric Hyperplanes of the Smallest Split Cayley Hexagon / M. Saniga, M. Planat, P. Pracna, P. Lévay // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 19 назв. — англ. | uk_UA |
dc.identifier.issn | 1815-0659 | |
dc.identifier.other | 2010 Mathematics Subject Classification: 51Exx; 81R99 | |
dc.identifier.other | DOI: http://dx.doi.org/10.3842/SIGMA.2012.083 | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/148670 | |
dc.language.iso | en | uk_UA |
dc.publisher | Інститут математики НАН України | uk_UA |
dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
dc.status | published earlier | uk_UA |
dc.title | 'Magic' Configurations of Three-Qubit Observables and Geometric Hyperplanes of the Smallest Split Cayley Hexagon | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 083-Saniga.pdf
- Розмір:
- 334.45 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: