'Magic' Configurations of Three-Qubit Observables and Geometric Hyperplanes of the Smallest Split Cayley Hexagon

dc.contributor.authorSaniga, M.
dc.contributor.authorPlanat, M.
dc.contributor.authorPracna, P.
dc.contributor.authorLévay, P.
dc.date.accessioned2019-02-18T17:45:05Z
dc.date.available2019-02-18T17:45:05Z
dc.date.issued2012
dc.description.abstractRecently Waegell and Aravind [J. Phys. A: Math. Theor. 45 (2012), 405301, 13 pages] have given a number of distinct sets of three-qubit observables, each furnishing a proof of the Kochen-Specker theorem. Here it is demonstrated that two of these sets/configurations, namely the 18₂−12₃ and 2₄14₂−4₃6₄ ones, can uniquely be extended into geometric hyperplanes of the split Cayley hexagon of order two, namely into those of types V₂₂(37;0,12,15,10) and V₄(49;0,0,21,28) in the classification of Frohardt and Johnson [Comm. Algebra 22 (1994), 773-797]. Moreover, employing an automorphism of order seven of the hexagon, six more replicas of either of the two configurations are obtained.uk_UA
dc.description.sponsorshipThis work was partially supported by the VEGA grant agency project 2/0098/10.uk_UA
dc.identifier.citation'Magic' Configurations of Three-Qubit Observables and Geometric Hyperplanes of the Smallest Split Cayley Hexagon / M. Saniga, M. Planat, P. Pracna, P. Lévay // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 19 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 51Exx; 81R99
dc.identifier.otherDOI: http://dx.doi.org/10.3842/SIGMA.2012.083
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/148670
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.title'Magic' Configurations of Three-Qubit Observables and Geometric Hyperplanes of the Smallest Split Cayley Hexagonuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
083-Saniga.pdf
Розмір:
334.45 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: