Inscribed Radius Bounds for Lower Ricci Bounded Metric Measure Spaces with Mean Convex Boundary

dc.contributor.authorBurtscher, Annegret
dc.contributor.authorKetterer, Christian
dc.contributor.authorMcCann, Robert J.
dc.contributor.authorWoolgar, Eric
dc.date.accessioned2025-12-23T13:12:30Z
dc.date.issued2020
dc.description.abstractConsider an essentially nonbranching metric measure space with the measure contraction property of Ohta and Sturm, or with a Ricci curvature lower bound in the sense of Lott, Sturm, and Villani. We prove a sharp upper bound on the inscribed radius of any subset whose boundary has a suitably signed lower bound on its generalized mean curvature. This provides a nonsmooth analog to a result of Kasue (1983) and Li (2014). We prove a stability statement concerning such bounds and - in the Riemannian curvature-dimension (RCD) setting - characterize the cases of equality.
dc.description.sponsorshipThe authors are grateful to Yohei Sakurai for directing us to the work of Kasue and to the anonymous referees for their very constructive comments. AB is supported by the Dutch Research Council (NWO), Project number VI.Veni.192.208. CK is funded by the Deutsche Forschungsgemeinschaft (DFG) Projektnummer 396662902, Synthetische Krummungsschranken durch Methoden des optimalen Transports . RMs research is supported in part by NSERC Discovery Grants RGPIN201504383 and 202004162. EW's research is supported in part by NSERC Discovery Grant RGPIN-2017-04896.
dc.identifier.citationInscribed Radius Bounds for Lower Ricci Bounded Metric Measure Spaces with Mean Convex Boundary. Annegret Burtscher, Christian Ketterer, Robert J. McCann and Eric Woolgar. SIGMA 16 (2020), 131, 29 pages
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2020.131
dc.identifier.issn1815-0659
dc.identifier.other2020 Mathematics Subject Classification: 51K10; 53C21; 30L99; 83C75
dc.identifier.otherarXiv:2005.07435
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/211088
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleInscribed Radius Bounds for Lower Ricci Bounded Metric Measure Spaces with Mean Convex Boundary
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
131-Burtscher.pdf
Розмір:
556.43 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: