Conformally Equivariant Quantization - a Complete Classification

dc.contributor.authorMichel, Jean-Philippe
dc.date.accessioned2019-02-18T11:56:51Z
dc.date.available2019-02-18T11:56:51Z
dc.date.issued2012
dc.description.abstractConformally equivariant quantization is a peculiar map between symbols of real weight δ and differential operators acting on tensor densities, whose real weights are designed by λ and λ+δ. The existence and uniqueness of such a map has been proved by Duval, Lecomte and Ovsienko for a generic weight δ. Later, Silhan has determined the critical values of δ for which unique existence is lost, and conjectured that for those values of δ existence is lost for a generic weight λ. We fully determine the cases of existence and uniqueness of the conformally equivariant quantization in terms of the values of δ and λ. Namely, (i) unique existence is lost if and only if there is a nontrivial conformally invariant differential operator on the space of symbols of weight δ, and (ii) in that case the conformally equivariant quantization exists only for a finite number of λ, corresponding to nontrivial conformally invariant differential operators on λ-densities. The assertion (i) is proved in the more general context of IFFT (or AHS) equivariant quantization.uk_UA
dc.description.sponsorshipIt is a pleasure to acknowledge Christian Duval, Pierre Mathonet and Valentin Ovsienko for fruitful discussions and the referees for suggesting numerous improvements. I thank the Luxembourgian NRF for support via the AFR grant PDR-09-063.uk_UA
dc.identifier.citationConformally Equivariant Quantization - a Complete Classification / Jean-Philippe Michel // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 25 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 53A55; 53A30; 17B56; 47E05
dc.identifier.otherDOI: http://dx.doi.org/10.3842/SIGMA.2012.022
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/148414
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleConformally Equivariant Quantization - a Complete Classificationuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
022-Michel.pdf
Розмір:
471.09 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: