Monge-Ampère Systems with Lagrangian Pairs

dc.contributor.authorIshikawa, G.
dc.contributor.authorMachida, Y.
dc.date.accessioned2019-02-13T17:48:28Z
dc.date.available2019-02-13T17:48:28Z
dc.date.issued2015
dc.description.abstractThe classes of Monge-Ampère systems, decomposable and bi-decomposable Monge-Ampère systems, including equations for improper affine spheres and hypersurfaces of constant Gauss-Kronecker curvature are introduced. They are studied by the clear geometric setting of Lagrangian contact structures, based on the existence of Lagrangian pairs in contact structures. We show that the Lagrangian pair is uniquely determined by such a bi-decomposable system up to the order, if the number of independent variables ≥3. We remark that, in the case of three variables, each bi-decomposable system is generated by a non-degenerate three-form in the sense of Hitchin. It is shown that several classes of homogeneous Monge-Ampère systems with Lagrangian pairs arise naturally in various geometries. Moreover we establish the upper bounds on the symmetry dimensions of decomposable and bi-decomposable Monge-Ampère systems respectively in terms of the geometric structure and we show that these estimates are sharp (Proposition 4.2 and Theorem 5.3).uk_UA
dc.description.sponsorshipThe first author was partially supported by Grants-in-Aid for Scientific Research No. 19654006. The second author was partially supported by Grants-in-Aid for Scientific Research (C) No. 18540105. The authors would like to thank anonymous referees for the valuable comments to improve the paper.uk_UA
dc.identifier.citationMonge-Ampère Systems with Lagrangian Pairs / G. Ishikawa, Y. Machida // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 31 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 58K20; 53A15; 53C42
dc.identifier.otherDOI:10.3842/SIGMA.2015.081
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/147154
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleMonge-Ampère Systems with Lagrangian Pairsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
081-Ishikawa.pdf
Розмір:
499.72 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: