The Decomposition of Global Conformal Invariants: Some Technical Proofs. I
dc.contributor.author | Alexakis, S. | |
dc.date.accessioned | 2019-02-11T15:15:25Z | |
dc.date.available | 2019-02-11T15:15:25Z | |
dc.date.issued | 2011 | |
dc.description.abstract | This paper forms part of a larger work where we prove a conjecture of Deser and Schwimmer regarding the algebraic structure of ''global conformal invariants''; these are defined to be conformally invariant integrals of geometric scalars. The conjecture asserts that the integrand of any such integral can be expressed as a linear combination of a local conformal invariant, a divergence and of the Chern-Gauss-Bonnet integrand. | uk_UA |
dc.description.sponsorship | This work has absorbed the best part of the author’s energy over many years. This research was partially conducted during the period the author served as a Clay Research Fellow, an MSRI postdoctoral fellow, a Clay Liftof f fellow and a Procter Fellow. The author is immensely indebted to Charles Fef ferman for devoting twelve long months to the meticulous proof-reading of the present paper. He also wishes to express his gratitude to the Mathematics Department of Princeton University for its support during his work on this project | uk_UA |
dc.identifier.citation | The Decomposition of Global Conformal Invariants: Some Technical Proofs. I / S. Alexakis // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 26 назв. — англ. | uk_UA |
dc.identifier.issn | 1815-0659 | |
dc.identifier.other | 2010 Mathematics Subject Classification: 53B20; 53A55 | |
dc.identifier.other | DOI:10.3842/SIGMA.2011.019 | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/146788 | |
dc.language.iso | en | uk_UA |
dc.publisher | Інститут математики НАН України | uk_UA |
dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
dc.status | published earlier | uk_UA |
dc.title | The Decomposition of Global Conformal Invariants: Some Technical Proofs. I | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 019-Alexakis.pdf
- Розмір:
- 697.02 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: