The Decomposition of Global Conformal Invariants: Some Technical Proofs. I

dc.contributor.authorAlexakis, S.
dc.date.accessioned2019-02-11T15:15:25Z
dc.date.available2019-02-11T15:15:25Z
dc.date.issued2011
dc.description.abstractThis paper forms part of a larger work where we prove a conjecture of Deser and Schwimmer regarding the algebraic structure of ''global conformal invariants''; these are defined to be conformally invariant integrals of geometric scalars. The conjecture asserts that the integrand of any such integral can be expressed as a linear combination of a local conformal invariant, a divergence and of the Chern-Gauss-Bonnet integrand.uk_UA
dc.description.sponsorshipThis work has absorbed the best part of the author’s energy over many years. This research was partially conducted during the period the author served as a Clay Research Fellow, an MSRI postdoctoral fellow, a Clay Liftof f fellow and a Procter Fellow. The author is immensely indebted to Charles Fef ferman for devoting twelve long months to the meticulous proof-reading of the present paper. He also wishes to express his gratitude to the Mathematics Department of Princeton University for its support during his work on this projectuk_UA
dc.identifier.citationThe Decomposition of Global Conformal Invariants: Some Technical Proofs. I / S. Alexakis // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 26 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 53B20; 53A55
dc.identifier.otherDOI:10.3842/SIGMA.2011.019
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/146788
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleThe Decomposition of Global Conformal Invariants: Some Technical Proofs. Iuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
019-Alexakis.pdf
Розмір:
697.02 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: