Знакосохраняющее приближение периодических функций

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

Доведено теорему Джексона для наближення періодичних функцій із збереженням нулів (тобто коли наближаючий поліпом має ті самі нулі yi для знакозберігаючого наближення (тобто коли наближаючий поліпом має на кожному інтервалі (yi,yi−1) той самий знак, що й функція ff, де у,— точки, одержані з початкових точок −π≤y2s≤y2s−1<...<y1<π за допомогою рівності yi=yi+2s+2π при цьому ці точки є нулями 2π-періодичної неперервної функції f.
We prove the Jackson theorem for a zero-preserving approximation of periodic functions (i.e., in the case where the approximating polynomial has the same zeros yi ) and for a sign-preserving approximation [i.e., in the case where the approximating polynomial is of the same sign as a function f on each interval (yi,yi−1). Here, yi are the points obtained from the initial points −π≤y2s≤y2s−1<...<y1<π using the equality yi=yi+2s+2π furthermore, these points are zeros of a 2π-periodic continuous function f.

Опис

Теми

Статті

Цитування

Знакосохраняющее приближение периодических функций / М.Г. Плешаков, П.А. Попов // Український математичний журнал. — 2003. — Т. 55, № 8. — С. 1087–1098. — Бібліогр.: 7 назв. — рос.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced