Asymptotic Estimation for Eigenvalues in the Exponential Potential and for Zeros of Kᵢᵥ(𝓏) with Respect to Order

dc.contributor.authorKrynytskyi, Yuri
dc.contributor.authorRovenchak, Andrij
dc.date.accessioned2025-12-30T15:57:13Z
dc.date.issued2021
dc.description.abstractThe paper presents the derivation of the asymptotic behavior of 𝑣-zeros of the modified Bessel function of imaginary order Kᵢᵥ(𝓏). This derivation is based on the quasiclassical treatment of the exponential potential on the positive half-axis. The asymptotic expression for the 𝑣-zeros (zeros with respect to order) contains the Lambert 𝑊 function, which is readily available in most computer algebra systems and numerical software packages. The use of this function provides much higher accuracy of the estimation compared to known relations containing the logarithm, which is just the leading term of 𝑊(𝑥) at large 𝑥. Our result ensures accuracy sufficient for practical applications.
dc.identifier.citationAsymptotic Estimation for Eigenvalues in the Exponential Potential and for Zeros of Kᵢᵥ(𝓏) with Respect to Order. Yuri Krynytskyi and Andrij Rovenchak. SIGMA 17 (2021), 057, 7 pages
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2021.057
dc.identifier.issn1815-0659
dc.identifier.other2020 Mathematics Subject Classification: 33C10; 81Q05; 81Q20
dc.identifier.otherarXiv:2103.01732
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/211366
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleAsymptotic Estimation for Eigenvalues in the Exponential Potential and for Zeros of Kᵢᵥ(𝓏) with Respect to Order
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
057-Krynytskyi.pdf
Розмір:
759.14 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: