Geometry of Invariant Tori of Certain Integrable Systems with Symmetry and an Application to a Nonholonomic System

dc.contributor.authorFassò, F.
dc.contributor.authorGiacobbe, A.
dc.date.accessioned2019-02-16T08:37:14Z
dc.date.available2019-02-16T08:37:14Z
dc.date.issued2007
dc.description.abstractBifibrations, in symplectic geometry called also dual pairs, play a relevant role in the theory of superintegrable Hamiltonian systems. We prove the existence of an analogous bifibrated geometry in dynamical systems with a symmetry group such that the reduced dynamics is periodic. The integrability of such systems has been proven by M. Field and J. Hermans with a reconstruction technique. We apply the result to the nonholonomic system of a ball rolling on a surface of revolution.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Proceedings of the Workshop on Geometric Aspects of Integrable Systems (July 17–19, 2006, University of Coimbra, Portugal). The authors thank the Bernoulli Center (EPFL, Lausanne) for its hospitality during the 2004 program Geometric Mechanics and Its Applications, where the biggest part of this work was done, and Hans Duistermaat for some enlightening conversations on these topics.uk_UA
dc.identifier.citationGeometry of Invariant Tori of Certain Integrable Systems with Symmetry and an Application to a Nonholonomic System / F. Fassò, A. Giacobbe // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 20 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2000 Mathematics Subject Classification: 37J35; 70H33
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/147810
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleGeometry of Invariant Tori of Certain Integrable Systems with Symmetry and an Application to a Nonholonomic Systemuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
51-Fassò.pdf
Розмір:
400.28 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: