Gorenstein matrices
dc.contributor.author | Dokuchaev, M.A. | |
dc.contributor.author | Kirichenko, V.V. | |
dc.contributor.author | Zelensky, A.V. | |
dc.contributor.author | Zhuravlev, V.N. | |
dc.date.accessioned | 2019-06-18T17:50:15Z | |
dc.date.available | 2019-06-18T17:50:15Z | |
dc.date.issued | 2005 | |
dc.description.abstract | Let A = (aij ) be an integral matrix. We say that A is (0, 1, 2)-matrix if aij ∈ {0, 1, 2}. There exists the Gorenstein (0, 1, 2)-matrix for any permutation σ on the set {1, . . . , n} without fixed elements. For every positive integer n there exists the Gorenstein cyclic (0, 1, 2)-matrix An such that inx An = 2. If a Latin square Ln with a first row and first column (0, 1, . . . n − 1) is an exponent matrix, then n = 2m and Ln is the Cayley table of a direct product of m copies of the cyclic group of order 2. Conversely, the Cayley table Em of the elementary abelian group Gm = (2)×. . .×(2) of order 2 m is a Latin square and a Gorenstein symmetric matrix with first row (0, 1, . . . , 2 m − 1) and σ(Em) = 1 2 3 . . . 2 m − 1 2m 2 m 2 m − 1 2m − 2 . . . 2 1 . | uk_UA |
dc.description.sponsorship | The first author was partially supported by CNPq of Brazil, Proc. 304658/2003-0. The second author thanks the Institute of Mathenatics and Statistics of the University of S˜ao Paulo for the hospitality during his visit, which was supported by FAPESP of Brazil, Proc. 02/05087-2. | uk_UA |
dc.identifier.citation | Gorenstein matrices / M.A. Dokuchaev, V.V. Kirichenko, A.V. Zelensky, V.N. Zhuravlev // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 1. — С. 8–29. — Бібліогр.: 24 назв. — англ. | uk_UA |
dc.identifier.issn | 1726-3255 | |
dc.identifier.other | 2000 Mathematics Subject Classification: 16P40; 16G10. | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/156609 | |
dc.language.iso | en | uk_UA |
dc.publisher | Інститут прикладної математики і механіки НАН України | uk_UA |
dc.relation.ispartof | Algebra and Discrete Mathematics | |
dc.status | published earlier | uk_UA |
dc.title | Gorenstein matrices | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 03-Dokuchaev.pdf
- Розмір:
- 261.21 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: