Gorenstein matrices

dc.contributor.authorDokuchaev, M.A.
dc.contributor.authorKirichenko, V.V.
dc.contributor.authorZelensky, A.V.
dc.contributor.authorZhuravlev, V.N.
dc.date.accessioned2019-06-18T17:50:15Z
dc.date.available2019-06-18T17:50:15Z
dc.date.issued2005
dc.description.abstractLet A = (aij ) be an integral matrix. We say that A is (0, 1, 2)-matrix if aij ∈ {0, 1, 2}. There exists the Gorenstein (0, 1, 2)-matrix for any permutation σ on the set {1, . . . , n} without fixed elements. For every positive integer n there exists the Gorenstein cyclic (0, 1, 2)-matrix An such that inx An = 2. If a Latin square Ln with a first row and first column (0, 1, . . . n − 1) is an exponent matrix, then n = 2m and Ln is the Cayley table of a direct product of m copies of the cyclic group of order 2. Conversely, the Cayley table Em of the elementary abelian group Gm = (2)×. . .×(2) of order 2 m is a Latin square and a Gorenstein symmetric matrix with first row (0, 1, . . . , 2 m − 1) and σ(Em) = 1 2 3 . . . 2 m − 1 2m 2 m 2 m − 1 2m − 2 . . . 2 1 .uk_UA
dc.description.sponsorshipThe first author was partially supported by CNPq of Brazil, Proc. 304658/2003-0. The second author thanks the Institute of Mathenatics and Statistics of the University of S˜ao Paulo for the hospitality during his visit, which was supported by FAPESP of Brazil, Proc. 02/05087-2.uk_UA
dc.identifier.citationGorenstein matrices / M.A. Dokuchaev, V.V. Kirichenko, A.V. Zelensky, V.N. Zhuravlev // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 1. — С. 8–29. — Бібліогр.: 24 назв. — англ.uk_UA
dc.identifier.issn1726-3255
dc.identifier.other2000 Mathematics Subject Classification: 16P40; 16G10.
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/156609
dc.language.isoenuk_UA
dc.publisherІнститут прикладної математики і механіки НАН Україниuk_UA
dc.relation.ispartofAlgebra and Discrete Mathematics
dc.statuspublished earlieruk_UA
dc.titleGorenstein matricesuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
03-Dokuchaev.pdf
Розмір:
261.21 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: