Hilbert-Schmidt Operators vs. Integrable Systems of Elliptic Calogero-Moser Type III. The Heun Case

dc.contributor.authorRuijsenaars, Simon N.M.
dc.date.accessioned2019-02-19T17:47:23Z
dc.date.available2019-02-19T17:47:23Z
dc.date.issued2009
dc.description.abstractThe Heun equation can be rewritten as an eigenvalue equation for an ordinary differential operator of the form −d²/dx²+V(g;x), where the potential is an elliptic function depending on a coupling vector g ∈ R⁴. Alternatively, this operator arises from the BC1 specialization of the BCN elliptic nonrelativistic Calogero-Moser system (a.k.a. the Inozemtsev system). Under suitable restrictions on the elliptic periods and on g, we associate to this operator a self-adjoint operator H(g) on the Hilbert space H = L²([0,ω₁],dx), where 2ω₁ is the real period of V(g;x). For this association and a further analysis of H(g), a certain Hilbert-Schmidt operator I(g) on H plays a critical role. In particular, using the intimate relation of H(g) and I(g), we obtain a remarkable spectral invariance: In terms of a coupling vector c ∈ R⁴ that depends linearly on g, the spectrum of H(g(c)) is invariant under arbitrary permutations σ(c), σ ∈ S₄.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Proceedings of the Workshop “Elliptic Integrable Systems, Isomonodromy Problems, and Hypergeometric Functions” (July 21–25, 2008, MPIM, Bonn, Germany). We would like to thank F. Nijhof f, B. Sleeman and K. Takemura for illuminating discussions and for supplying information about related literature.uk_UA
dc.identifier.citationHilbert-Schmidt Operators vs. Integrable Systems of Elliptic Calogero-Moser Type III. The Heun Case / Simon N.M. Ruijsenaars // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 20 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2000 Mathematics Subject Classification: 33E05; 33E10; 46N50; 81Q05; 81Q10
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/149153
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleHilbert-Schmidt Operators vs. Integrable Systems of Elliptic Calogero-Moser Type III. The Heun Caseuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
49-Simon N.M. Ruijsenaars.pdf
Розмір:
317.46 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: