Hilbert-Schmidt Operators vs. Integrable Systems of Elliptic Calogero-Moser Type III. The Heun Case
| dc.contributor.author | Ruijsenaars, Simon N.M. | |
| dc.date.accessioned | 2019-02-19T17:47:23Z | |
| dc.date.available | 2019-02-19T17:47:23Z | |
| dc.date.issued | 2009 | |
| dc.description.abstract | The Heun equation can be rewritten as an eigenvalue equation for an ordinary differential operator of the form −d²/dx²+V(g;x), where the potential is an elliptic function depending on a coupling vector g ∈ R⁴. Alternatively, this operator arises from the BC1 specialization of the BCN elliptic nonrelativistic Calogero-Moser system (a.k.a. the Inozemtsev system). Under suitable restrictions on the elliptic periods and on g, we associate to this operator a self-adjoint operator H(g) on the Hilbert space H = L²([0,ω₁],dx), where 2ω₁ is the real period of V(g;x). For this association and a further analysis of H(g), a certain Hilbert-Schmidt operator I(g) on H plays a critical role. In particular, using the intimate relation of H(g) and I(g), we obtain a remarkable spectral invariance: In terms of a coupling vector c ∈ R⁴ that depends linearly on g, the spectrum of H(g(c)) is invariant under arbitrary permutations σ(c), σ ∈ S₄. | uk_UA |
| dc.description.sponsorship | This paper is a contribution to the Proceedings of the Workshop “Elliptic Integrable Systems, Isomonodromy Problems, and Hypergeometric Functions” (July 21–25, 2008, MPIM, Bonn, Germany). We would like to thank F. Nijhof f, B. Sleeman and K. Takemura for illuminating discussions and for supplying information about related literature. | uk_UA |
| dc.identifier.citation | Hilbert-Schmidt Operators vs. Integrable Systems of Elliptic Calogero-Moser Type III. The Heun Case / Simon N.M. Ruijsenaars // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 20 назв. — англ. | uk_UA |
| dc.identifier.issn | 1815-0659 | |
| dc.identifier.other | 2000 Mathematics Subject Classification: 33E05; 33E10; 46N50; 81Q05; 81Q10 | |
| dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/149153 | |
| dc.language.iso | en | uk_UA |
| dc.publisher | Інститут математики НАН України | uk_UA |
| dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
| dc.status | published earlier | uk_UA |
| dc.title | Hilbert-Schmidt Operators vs. Integrable Systems of Elliptic Calogero-Moser Type III. The Heun Case | uk_UA |
| dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 49-Simon N.M. Ruijsenaars.pdf
- Розмір:
- 317.46 KB
- Формат:
- Adobe Portable Document Format
- Опис:
- Стаття
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: