Modular Group Representations in Combinatorial Quantization with Non-Semisimple Hopf Algebras

dc.contributor.authorFaitg, M.
dc.date.accessioned2025-12-05T09:32:54Z
dc.date.issued2019
dc.description.abstractLet Σg,n be a compact oriented surface of genus g with n open disks removed. The algebra Lg,n(H) was introduced by Alekseev-Grosse-Schomerus and Buffenoir-Roche and is a combinatorial quantization of the moduli space of flat connections on Σg,n. Here we focus on the two building blocks L₀,₁(H) and L₁,₀(H) under the assumption that the gauge Hopf algebra H is finite-dimensional, factorizable, and ribbon, but not necessarily semisimple. We construct a projective representation of SL₂(Z), the mapping class group of the torus, based on L₁,₀(H), and we study it explicitly for H = Ūq(sl(2)). We also show that it is equivalent to the representation constructed by Lyubashenko and Majid.
dc.description.sponsorshipI am grateful to my advisors, Stéphane Baseilhac and Philippe Roche, for their regular support and their useful remarks. I thank the referees for carefully reading the manuscript and for many valuable comments, which improved the paper.
dc.identifier.citationModular Group Representations in Combinatorial Quantization with Non-Semisimple Hopf Algebras / M. Faitg // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 39 назв. — англ.
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2019.077
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 16T05; 81R05
dc.identifier.otherarXiv: 1805.00924
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/210311
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleModular Group Representations in Combinatorial Quantization with Non-Semisimple Hopf Algebras
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
077-Faitg.pdf
Розмір:
672.23 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: