Loop Equations for Gromov-Witten Invariant of P¹

dc.contributor.authorBorot, G.
dc.contributor.authorNorbury, P.
dc.date.accessioned2025-12-04T13:05:43Z
dc.date.issued2019
dc.description.abstractWe show that non-stationary Gromov-Witten invariants of P¹ can be extracted from open periods of the Eynard-Orantin topological recursion correlators ωg,ₙ whose Laurent series expansion at ∞ compute the stationary invariants. To do so, we overcome the technical difficulties to global loop equations for the spectral x(z)=z+1/z and y(z)=lnz from the local loop equations satisfied by the ωg,ₙ, and check these global loop equations are equivalent to the Virasoro constraints that are known to govern the full Gromov-Witten theory of P¹.
dc.description.sponsorshipThis work was initiated during a visit of G.B. to the University of Melbourne, supported by P. Zinn-Justin, whom he thanks for hospitality. G.B. also thanks Hiroshi Iritani for discussions on mirror symmetry, and acknowledges the support of the Max-Planck-Gesellschaft. Part of this work was carried out during a visit of P.N. to Ludwig-Maximilians-Universität which he thanks its hospitality. P.N. is supported by the Australian Research Council grants DP170102028 and DP180103891.
dc.identifier.citationLoop Equations for Gromov-Witten Invariant of P¹ / G. Borot, P. Norbury // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 17 назв. — англ.
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2019.061
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 32G15; 14D23; 53D45
dc.identifier.otherarXiv: 1905.01890
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/210234
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleLoop Equations for Gromov-Witten Invariant of P¹
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
061-Borot.pdf
Розмір:
544.15 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: