Algebra in superextensions of semilattices

dc.contributor.authorBanakh, T.
dc.contributor.authorGavrylkiv, V.
dc.date.accessioned2019-06-08T09:42:17Z
dc.date.available2019-06-08T09:42:17Z
dc.date.issued2012
dc.description.abstractGiven a semilattice X we study the algebraic properties of the semigroup υ(X) of upfamilies on X. The semigroup υ(X) contains the Stone-ˇCech extension β(X), the superextension λ(X), and the space of filters φ(X) on X as closed subsemigroups. We prove that υ(X) is a semilattice iff λ(X) is a semilattice iff φ(X) is a semilattice iff the semilattice X is finite and linearly ordered. We prove that the semigroup β(X) is a band if and only if X has no infinite antichains, and the semigroup λ(X) is commutative if and only if X is a bush with finite branches.uk_UA
dc.description.sponsorshipThe first author has been partially financed by NCN means granted by decision DEC-2011/01/B/ST1/01439.uk_UA
dc.identifier.citationAlgebra in superextensions of semilattices / T. Banakh, V. Gavrylkiv // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 1. — С. 26–42. — Бібліогр.: 14 назв. — англ.uk_UA
dc.identifier.issn1726-3255
dc.identifier.other2010 Mathematics Subject Classification: 06A12, 20M10.
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/152184
dc.language.isoenuk_UA
dc.publisherІнститут прикладної математики і механіки НАН Україниuk_UA
dc.relation.ispartofAlgebra and Discrete Mathematics
dc.statuspublished earlieruk_UA
dc.titleAlgebra in superextensions of semilatticesuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
03-Banakh.pdf
Розмір:
215.69 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: