Algebra in superextensions of semilattices
| dc.contributor.author | Banakh, T. | |
| dc.contributor.author | Gavrylkiv, V. | |
| dc.date.accessioned | 2019-06-08T09:42:17Z | |
| dc.date.available | 2019-06-08T09:42:17Z | |
| dc.date.issued | 2012 | |
| dc.description.abstract | Given a semilattice X we study the algebraic properties of the semigroup υ(X) of upfamilies on X. The semigroup υ(X) contains the Stone-ˇCech extension β(X), the superextension λ(X), and the space of filters φ(X) on X as closed subsemigroups. We prove that υ(X) is a semilattice iff λ(X) is a semilattice iff φ(X) is a semilattice iff the semilattice X is finite and linearly ordered. We prove that the semigroup β(X) is a band if and only if X has no infinite antichains, and the semigroup λ(X) is commutative if and only if X is a bush with finite branches. | uk_UA |
| dc.description.sponsorship | The first author has been partially financed by NCN means granted by decision DEC-2011/01/B/ST1/01439. | uk_UA |
| dc.identifier.citation | Algebra in superextensions of semilattices / T. Banakh, V. Gavrylkiv // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 1. — С. 26–42. — Бібліогр.: 14 назв. — англ. | uk_UA |
| dc.identifier.issn | 1726-3255 | |
| dc.identifier.other | 2010 Mathematics Subject Classification: 06A12, 20M10. | |
| dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/152184 | |
| dc.language.iso | en | uk_UA |
| dc.publisher | Інститут прикладної математики і механіки НАН України | uk_UA |
| dc.relation.ispartof | Algebra and Discrete Mathematics | |
| dc.status | published earlier | uk_UA |
| dc.title | Algebra in superextensions of semilattices | uk_UA |
| dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: