Monodromy of an Inhomogeneous Picard-Fuchs Equation

dc.contributor.authorLaporte, G.
dc.contributor.authorWalcher, J.
dc.date.accessioned2019-02-18T11:50:17Z
dc.date.available2019-02-18T11:50:17Z
dc.date.issued2012
dc.description.abstractThe global behaviour of the normal function associated with van Geemen's family of lines on the mirror quintic is studied. Based on the associated inhomogeneous Picard-Fuchs equation, the series expansions around large complex structure, conifold, and around the open string discriminant are obtained. The monodromies are explicitly calculated from this data and checked to be integral. The limiting value of the normal function at large complex structure is an irrational number expressible in terms of the di-logarithm.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Special Issue “Mirror Symmetry and Related Topics”. The full collection is available at http://www.emis.de/journals/SIGMA/mirror symmetry.html. We would like to thank Matt Kerr for asking the question addressed in this work, and Josh Lapan for stimulating discussions. J.W. wishes to thank the Simons Center for Geometry and Physics, where this paper was written up. This work was supported in part by the Canada Research Chair program and an NSERC discovery grant.uk_UA
dc.identifier.citationMonodromy of an Inhomogeneous Picard-Fuchs Equation / G. Laporte, J. Walcher // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 10 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 14C25; 14J33
dc.identifier.otherDOI: http://dx.doi.org/10.3842/SIGMA.2012.056
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/148409
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleMonodromy of an Inhomogeneous Picard-Fuchs Equationuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
056-Laporte.pdf
Розмір:
289.62 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: