A Projection Argument for Differential Inclusions, with Applications to Persistence of Mass-Action Kinetics

dc.contributor.authorGopalkrishnan, M.
dc.contributor.authorMiller, E.
dc.contributor.authorShiu, A.
dc.date.accessioned2019-02-19T19:02:47Z
dc.date.available2019-02-19T19:02:47Z
dc.date.issued2013
dc.description.abstractMotivated by questions in mass-action kinetics, we introduce the notion of vertexical family of differential inclusions. Defined on open hypercubes, these families are characterized by particular good behavior under projection maps. The motivating examples are certain families of reaction networks – including reversible, weakly reversible, endotactic, and strongly endotactic reaction networks – that give rise to vertexical families of mass-action differential inclusions. We prove that vertexical families are amenable to structural induction. Consequently, a trajectory of a vertexical family approaches the boundary if and only if either the trajectory approaches a vertex of the hypercube, or a trajectory in a lower-dimensional member of the family approaches the boundary. With this technology, we make progress on the global attractor conjecture, a central open problem concerning mass-action kinetics systems. Additionally, we phrase mass-action kinetics as a functor on reaction networks with variable rates.uk_UA
dc.description.sponsorshipMG was supported by a Ramanujan fellowship from the Department of Science and Technology, India, and, during a semester-long stay at Duke University, by the Duke MathBio RTG grant NSF DMS-0943760. EM had support from NSF grant DMS-1001437. AS was supported by an NSF postdoctoral fellowship DMS-1004380. The authors thank David F. Anderson, Gheorghe Craciun, and Casian Pantea for helpful discussions, and Duke University where many of the conversations occurred. The authors also thank the two referees, whose perceptive and insightful comments improved this work.uk_UA
dc.identifier.citationA Projection Argument for Differential Inclusions, with Applications to Persistence of Mass-Action Kinetics / M. Gopalkrishnan, E. Miller, A. Shiu // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 22 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 34A60; 80A30; 92C45; 37B25; 34D23; 37C10; 37C15; 92E20; 92C42; 54B30; 18B30
dc.identifier.otherDOI: http://dx.doi.org/10.3842/SIGMA.2013.025
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/149229
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleA Projection Argument for Differential Inclusions, with Applications to Persistence of Mass-Action Kineticsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
025-Gopalkrishnan.pdf
Розмір:
500.18 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: