Discrete Minimal Surface Algebras

dc.contributor.authorArnlind, J.
dc.contributor.authorHoppe, J.
dc.date.accessioned2019-02-09T09:00:43Z
dc.date.available2019-02-09T09:00:43Z
dc.date.issued2010
dc.description.abstractWe consider discrete minimal surface algebras (DMSA) as generalized noncommutative analogues of minimal surfaces in higher dimensional spheres. These algebras appear naturally in membrane theory, where sequences of their representations are used as a regularization. After showing that the defining relations of the algebra are consistent, and that one can compute a basis of the enveloping algebra, we give several explicit examples of DMSAs in terms of subsets of sln (any semi-simple Lie algebra providing a trivial example by itself). A special class of DMSAs are Yang-Mills algebras. The representation graph is introduced to study representations of DMSAs of dimension d ≤ 4, and properties of representations are related to properties of graphs. The representation graph of a tensor product is (generically) the Cartesian product of the corresponding graphs. We provide explicit examples of irreducible representations and, for coinciding eigenvalues, classify all the unitary representations of the corresponding algebras.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Special Issue “Noncommutative Spaces and Fields”. The full collection is available at http://www.emis.de/journals/SIGMA/noncommutative.html. We would like to thank the Marie Curie Research Training Network ENIGMA and the Swedish Research Council, as well as the IHES, the Sonderforschungsbereich “Raum-Zeit-Materie” (SFB647) and ETH Z¨urich, for financial support respectively hospitality – and Martin Bordemann for many discussions and collaboration on related topics.uk_UA
dc.identifier.citationDiscrete Minimal Surface Algebras / J. Arnlind, J. Hoppe // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 17 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 81R10; 06B15
dc.identifier.otherDOI:10.3842/SIGMA.2010.042
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/146344
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleDiscrete Minimal Surface Algebrasuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
042-Arnlind.pdf
Розмір:
333.02 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: