Selection-mutation balance models with epistatic selection

dc.contributor.authorKondratiev, Yu.G.
dc.contributor.authorKuna, T.
dc.contributor.authorOhlerich, N.
dc.date.accessioned2017-06-04T17:19:27Z
dc.date.available2017-06-04T17:19:27Z
dc.date.issued2008
dc.description.abstractWe present an application of birth-and-death processes on configuration spaces to a generalized mutationselection balance model. The model describes the aging of population as a process of accumulation of mutations in a genotype. A rigorous treatment demands that mutations correspond to points in abstract spaces. Our model describes an infinite-population, infinite-sites model in continuum. The dynamical equation which describes the system, is of Kimura-Maruyama type. The problem can be posed in terms of evolution of states (differential equation) or, equivalently, represented in terms of Feynman-Kac formula. The questions of interest are the existence of a solution, its asymptotic behavior, and properties of the limiting state. In the non-epistatic case the problem was posed and solved in [Steinsaltz D., Evans S.N., Wachter K.W., Adv. Appl. Math., 2005, 35(1)]. In our model we consider a topological space X as the space of positions of mutations and the influence of an epistatic potential on these mutations.uk_UA
dc.description.abstractМи представляємо застосування процесiв народження-знищення на конфiгурацiйних просторах до узагальненої моделi селекцiйно-мутацiйного балансу. Модель описує старiння популяцiї як процес накопичення мутацiй в генотипi. В математично строгому пiдходi мутацiї вiдповiдають точкам у абстрактному просторi. Наша модель описує нескiнчено-популяцiйну модель з безмежною кiлькiстю точок у континуумi. Динамiчне рiвняння, що описує систему, є типу Кiмури-Маруями. Проблема може бути поставлена в термiнах еволюцiї станiв (диференцiальнi рiвняння) або, що є еквiвалентно, за допомогою формули Фейнмана-Каца. Дослiджується питання iснування розв’язку, його асимптотичної поведiнки, властивостi граничного стану. У неепiстатичному випадку проблема була поставлена i розв’язана у [Steinsaltz D., Evans S.N., Wachter K.W., Adv. Appl. Math., 2005, 35(1)]. В нашiй моделi ми розглядаємо топологiчний простiр X як простiр позицiй мутацiй та вплив на епiстатичний потенцiал.uk_UA
dc.identifier.citationSelection-mutation balance models with epistatic selection / Yu.G. Kondratiev, T. Kuna, N. Ohlerich // Condensed Matter Physics. — 2008. — Т. 11, № 2(54). — С. 283-291. — Бібліогр.: 7 назв. — англ.uk_UA
dc.identifier.issn1607-324X
dc.identifier.otherPACS: 02.50.Ga
dc.identifier.otherDOI:10.5488/CMP.11.2.283
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/119142
dc.language.isoenuk_UA
dc.publisherІнститут фізики конденсованих систем НАН Україниuk_UA
dc.relation.ispartofCondensed Matter Physics
dc.statuspublished earlieruk_UA
dc.titleSelection-mutation balance models with epistatic selectionuk_UA
dc.title.alternativeМоделi селекцiйно-мутацiйного балансу з епiстатичною селекцiєюuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
09-Kondratiev.pdf
Розмір:
158.13 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: