Equilibrium stochastic dynamics of Poisson cluster ensembles
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут фізики конденсованих систем НАН України
Анотація
The distribution μ of a Poisson cluster process in Χ=R^d (with n-point clusters) is studied via the projection of an auxiliary Poisson measure in the space of configurations in Χ^n, with the intensity measure being the convolution of the background intensity (of cluster centres) with the probability distribution of a generic cluster. We show that μ is quasi-invariant with respect to the group of compactly supported diffeomorphisms of Χ, and prove an integration by parts formula for μ. The corresponding equilibrium stochastic dynamics is then constructed using the method of Dirichlet forms.
Розподiл μ процесу пуассонових кластерiв в X = R^d (з n-точковими кластерами) дослiджується за допомогою проектування допомiжної пуассонової мiри в просторi конфiгурацiй в Χ^n, для якої мiрою iнтесивностi є згортка вихiдної iнтенсивностi (кластерних центрiв) з ймовiрнiсним розподiлом загального кластера. Ми показуємо, що μ є квазi-iнварiантним вiдносно групи дифеоморфiзмiв X, що мають компактний носiй, а також доводимо, що μ задовiльняє формулi iнтегрування частинами. В результатi, за допомогою форм Дiрiхле побудовано вiдповiдну рiвноважну стохастичну динамiку.
Розподiл μ процесу пуассонових кластерiв в X = R^d (з n-точковими кластерами) дослiджується за допомогою проектування допомiжної пуассонової мiри в просторi конфiгурацiй в Χ^n, для якої мiрою iнтесивностi є згортка вихiдної iнтенсивностi (кластерних центрiв) з ймовiрнiсним розподiлом загального кластера. Ми показуємо, що μ є квазi-iнварiантним вiдносно групи дифеоморфiзмiв X, що мають компактний носiй, а також доводимо, що μ задовiльняє формулi iнтегрування частинами. В результатi, за допомогою форм Дiрiхле побудовано вiдповiдну рiвноважну стохастичну динамiку.
Опис
Теми
Цитування
Equilibrium stochastic dynamics of Poisson cluster ensembles / L. Bogachev, A. Daletskii // Condensed Matter Physics. — 2008. — Т. 11, № 2(54). — С. 261-273. — Бібліогр.: 18 назв. — англ.